
CS	3005:	Programming	in	C++
Action	Data,	Menu	Data
In	previous	assignments	the	functions	declared	in	 image_menu.h 	needed	to	have	an	input	stream	and	an
output	stream	to	interact	with	the	user.	 getString() 	is	an	example	of	this.	Other	functions	also	needed	an
Image 	object	or	a	 PPM 	object	to	work	on.	 diagonalQuadPattern() 	and	 writeUserImage() 	are	examples	of	these
cases.	As	we	add	to	the	complexity	of	the	software	project,	some	of	these	functions	will	require	additional
parameters,	and	new	functions	will	requires	these	parameters,	and	more.

Soon,	our	project	create	a	program	that	allows	the	user	to	choose	the	actions	it	takes,	by	using	a	menu
system.	This	menu	will	allow	the	user	to	read	PPM	images	from	files,	edit	them	with	several	image
operations,	and	save	the	resulting	images	back	to	PPM	files.

In	this	assignment,	you	will	build	a	pair	of	classes	to	support	the	menu	system,	and	the	various	parameters
needed	by	the	action	functions	in	the	system.	The	 ActionData 	class	will	contain	the	input	and	output
streams,	some	 PPM 	objects,	other	data	necessary	to	control	user	interaction,	and	application	status.	The
MenuData 	class	will	keep	a	collection	of	all	actions	the	user	can	apply,	the	functions	that	implement	the
actions,	and	a	help	message	for	each	action.

There	will	not	be	a	new	executable	program	at	the	end	of	this	assignment.	But,	there	will	be	one	soon.

Assignment
In	this	assignment,	you	will	add	code	to	the	work	from	the	previous	assignments.	When	you	have	completed
the	assignment	the	previous	programs	will	all	work	the	same	as	they	did	before.	You	will	also	have	some
unused	functions	that	will	make	the	next	assignments	easier.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Create	 ActionData.h 	and	 ActionData.cpp
Declare	the	 ActionData 	class	in	the	header	file,	and	implement	its	methods	in	the	implementation	file.
Descriptions	of	the	data	members	and	methods	follow.

Data	Members:

std::istream& 	The	application’s	input	stream.	Notice	that	this	data	member	should	be	declared	as	a
reference	(&).	See	the	constructor	for	instructions	to	initialize	it	correctly.
std::ostream& 	The	application’s	output	stream.	Notice	that	this	data	member	should	be	declared	as	a
reference	(&).	See	the	constructor	for	instructions	to	initialize	it	correctly.
PPM 	We	will	call	this	the	“input	image	1”.	This	is	the	 PPM 	object	that	the	user	will	act	on	most	of	the
time.	For	example,	if	the	user	wants	to	set	the	width	of	the	image,	this	is	the	object	that	will	be
changed.
PPM 	We	will	call	this	the	“input	image	2”.	This	is	the	 PPM 	object	that	the	user	will	act	on	some	of	the
time.	For	example,	if	the	user	wants	to	merge	two	images,	this	will	be	the	secondary	image	to	merge.
PPM 	We	will	call	this	the	“output	image”.	This	is	the	 PPM 	object	that	will	be	used	when	the	user	writes
an	image	to	a	file.	The	main	way	to	change	this	object	is	for	the	user	to	ask	for	the	input	image	1	to	be
copied	to	it.
bool 	This	data	member	keeps	track	of	whether	the	user	has	asked	for	the	application	to	be	done	(quit).

Methods:

ActionData(std::istream&	is,	std::ostream&	os); 	The	constructor	initializes	the	input	and	output	stream
data	members	from	the	two	parameters.	The	 : 	initialization	syntax	must	be	used	for	this	initialization.
Also	initializes	the	Boolean	data	member	to	 false .	The	 PPM 	data	members	do	not	need	any	initialization.
Their	default	constructors	will	automatically	initialize	them.
std::istream&	getIS(); 	Returns	the	input	stream	data	member.
std::ostream&	getOS(); 	Returns	the	output	stream	data	member.
PPM&	getInputImage1(); 	Returns	the	input	image	1	data	member.
PPM&	getInputImage2(); 	Returns	the	input	image	2	data	member.
PPM&	getOutputImage(); 	Returns	the	output	image	data	member.
bool	getDone()	const; 	Returns	the	Boolean	data	member.

void	setDone(); 	Sets	the	Boolean	data	member	to	 true .

Create	 MenuData.h 	and	 MenuData.cpp
Declare	the	 MenuData 	class	in	the	header	file,	and	implement	its	methods	in	the	implementation	file.
Descriptions	of	the	data	members	and	methods	follow.	This	class	will	be	used	to	keep	track	of	the	command
names	that	users	can	type,	the	function	that	will	be	called	for	each	command	name,	and	a	text	description	of
each	command’s	actions.

In	the	header	file,	define	the	 ActionFunctionType 	using	this	 typedef .

typedef	void	(*ActionFunctionType)(ActionData&	action_data);

Data	Members:

std::vector<std::string> 	This	is	a	collection	of	the	command	names	the	user	can	type.
std::map<std::string,ActionFunctionType> 	This	is	a	map	from	command	name	to	action	function.
std::map<std::string,std::string> 	This	is	a	map	from	command	name	to	command	description.

Methods:

MenuData(); 	All	data	members	have	default	constructors	that	do	the	right	thing,	so	no	initialization	of
the	data	members	is	necessary.	The	constructor	must	be	implemented,	it	is	just	empty.
void	addAction(const	std::string&	name,	ActionFunctionType	func,	const	std::string&	description);
Append	 name 	to	the	collection	of	names,	insert	 func 	in	the	action	function	map,	with	 name 	as	the	key,
and	insert	 description 	into	the	description	map	with	 name 	as	the	key.
const	std::vector<std::string>&	getNames()	const; 	Return	the	name	collection	data	member.
ActionFunctionType	getFunction(const	std::string&	name); 	If	 name 	is	a	key	in	the	action	function	map,
return	the	function	associated	with	it.	If	 name 	is	not	a	key,	return	 0 .
const	std::string&	getDescription(const	std::string&	name); 	If	 name 	is	a	key	in	the	description	map,
return	the	description	associated	with	it.	If	 name 	is	not	a	key,	return	the	empty	string.	Use	a	 static
std::string 	variable	that	is	initialized	to	the	empty	string.

Additions	to	the	 PPM 	Class
Update	the	 PPM 	header	file	and	implementation	file	to	add	the	following	method	used	to	read	images	from
files.

void	readStream(std::istream&	is); 	This	method	is	the	reverse	of	the	 writeStream() 	method.	It	will	read
information	from	the	input	stream,	and	change	the	contents	of	the	 PPM 	object.	Every	place	that
writeStream() 	uses	 << 	to	write	an	ASCII	string,	 readStream() 	will	use	 >> 	to	read	an	ASCII	string	into	a
variable.	Everywhere	that	 writeStream() 	uses	 .write() 	to	write	a	byte	of	data,	 readStream() 	will	use
.read() 	to	read	a	byte.	Where	 writeStream() 	used	the	 get*() 	methods	to	fetch	values	from	the	object,
readStream() 	will	use	 set*() 	methods	to	set	them.

Update	 Makefile
Since	 ActionData.{h,cpp} 	and	 MenuData.{h,cpp} 	have	been	added,	you’ll	need	to	add	rules	to	build
ActionData.o ,	and	 MenuData.o .	Since	these	are	not	currently	used	in	any	programs,	they	do	not	need	to	be
added	to	any	dependency	lists,	or	linker	commands,	yet.

Build	Requirements
make	ActionData.o 	-	builds	the	ActionData.o
make	MenuData.o 	-	builds	the	MenuData.o
make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make 	-	builds	all	programs

Additional	Documentation
C++	Reference
Examples	from	class
Windows	PPM	Viewer
Linux	PPM	Viewer:	 eog	file.ppm

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://www.irfanview.com/

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	programs	must	build,	run	and	give	correct	output.

