
CS	3005:	Programming	in	C++
Overloaded	Operators
This	assignment	requires	extending	the	text-based	application	for	working	with	PPM	images.	The	user	will
now	be	able	to	add	two	images,	take	their	difference,	and	multiple	or	divide	them	by	a	number.

The	result	will	be	the	ability	to	blend	two	images,	and	to	change	the	overall	brightness	of	an	image.

Assignment
In	this	assignment,	you	will	update	the	 ppm_menu 	program	from	the	previous	assignments.	All	of	the	previous
assignments’	functionality	will	remain	intact.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Make	changes	as	described	below.

Update	 PPM.{h,cpp}
The	following	methods	must	be	added	to	the	 PPM 	class	declaration	in	 PPM.h 	and	implemented	in	 PPM.cpp .

bool	operator==(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	the	same	number	of	pixels	as	 rhs .
Otherwise	returns	false.
bool	operator!=(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	a	different	number	of	pixels	than
rhs .	Otherwise	returns	false.
bool	operator<(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	a	fewer	number	of	pixels	than	 rhs .
Otherwise	returns	false.
bool	operator<=(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	a	fewer	number	of	pixels	than	 rhs
or	equal	number	of	pixels.	Otherwise	returns	false.
bool	operator>(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	a	greater	number	of	pixels	than	 rhs .
Otherwise	returns	false.
bool	operator>=(	const	PPM&	rhs	)	const; 	Returns	true	if	 *this 	has	a	greater	number	of	pixels	than	 rhs
or	equal	number	of	pixels.	Otherwise	returns	false.
PPM&	operator+=(	const	PPM&	rhs	); 	Assumes	 *this 	and	 rhs 	have	the	same	width	and	height.	Adds	the
channel	values	from	 rhs 	into	the	channels	for	 *this .	If	the	resulting	value	is	larger	than	max	color
value,	set	to	max	color	value.	Returns	 *this .
PPM&	operator-=(	const	PPM&	rhs	); 	Assumes	 *this 	and	 rhs 	have	the	same	width	and	height.	Subtracts
the	channel	values	from	 rhs 	from	the	channels	for	 *this .	If	the	resulting	value	is	less	than	0,	set	to	0.
Returns	 *this .
PPM&	operator*=(	const	double&	rhs	); 	Multiples	every	channel	value	of	 *this 	by	 rhs .	If	the	resulting
value	is	larger	than	max	color	value,	set	to	max	color	value.	If	the	resulting	value	is	less	than	0,	set	to	0.
Returns	 *this .
PPM&	operator/=(	const	double&	rhs	); 	Divides	every	channel	value	of	 *this 	by	 rhs .	If	the	resulting
value	is	larger	than	max	color	value,	set	to	max	color	value.	If	the	resulting	value	is	less	than	0,	set	to	0.
Returns	 *this .
PPM	operator+(	const	PPM&	rhs	)	const; 	Creates	a	new	 PPM 	object	with	the	same	meta	data	(height,
width,	max	color	value)	as	 *this .	Sets	the	channel	values	in	the	new	object	to	the	sum	of	the	channel
values	for	 *this 	and	 rhs .	If	the	value	is	greater	than	max	color	value,	set	to	max	color	value.	Returns
the	new	object.
PPM	operator-(	const	PPM&	rhs	)	const; 	Creates	a	new	 PPM 	object	with	the	same	meta	data	(height,
width,	max	color	value)	as	 *this .	Sets	the	channel	values	in	the	new	object	to	the	difference	of	the
channel	values	for	 *this 	and	 rhs .	If	the	value	is	less	than	0,	set	to	0.	Returns	the	new	object.
PPM	operator*(	const	double&	rhs	)	const; 	Creates	a	new	 PPM 	object	with	the	same	meta	data	(height,
width,	max	color	value)	as	 *this .	Sets	the	channel	values	in	the	new	object	to	the	product	of	the
channel	values	for	 *this 	and	the	value	of	 rhs .	If	the	value	is	greater	than	max	color	value,	set	to	max
color	value.	If	the	value	is	less	than	0,	set	to	0.	Returns	the	new	object.
PPM	operator/(	const	double&	rhs	)	const; 	Creates	a	new	 PPM 	object	with	the	same	meta	data	(height,
width,	max	color	value)	as	 *this .	Sets	the	channel	values	in	the	new	object	to	the	division	of	the
channel	values	of	 *this 	and	by	the	value	of	 rhs .	If	the	value	is	greater	than	max	color	value,	set	to	max
color	value.	If	the	value	is	less	than	0,	set	to	0.	Returns	the	new	object.



Update	 image_menu.h 	add	 image_filters.cpp
Implement	the	following	functions	in	a	new	file	 image_filters.cpp .	Put	the	declarations	in	 image_menu.h .	The
functions	should	use	input	image	1	as	the	left	hand	operand.	If	the	right	hand	operand	is	a	 PPM 	object,	use
input	image	2.	If	the	right	hand	operand	is	a	numeric	value,	use	 getDouble 	to	ask	the	user	for	the	value	to
use.	If	the	operator	does	not	change	the	left	hand	operand,	assign	the	result	into	the	output	image.

void	plusEquals(	ActionData&	action_data	); 	Modifies	input	image	1	by	adding	input	image	2	to	it.
void	minusEquals(	ActionData&	action_data	); 	Modifies	input	image	1	by	subtracting	input	image	2	from
it.
void	timesEquals(	ActionData&	action_data	); 	Modifies	input	image	1	by	multiplying	it	by	the	double
obtained	by	calling	 getDouble 	with	a	prompt	of	“Factor?	“.
void	divideEquals(	ActionData&	action_data	); 	Modifies	input	image	1	by	dividing	it	by	the	double
obtained	by	calling	 getDouble 	with	a	prompt	of	“Factor?	“.
void	plus(	ActionData&	action_data	); 	Sets	output	image	to	be	the	sum	of	input	image	1	and	input
image	2.
void	minus(	ActionData&	action_data	) ;	Sets	output	image	to	be	the	difference	of	input	image	1	and
input	image	2.
void	times(	ActionData&	action_data	); 	Sets	output	image	to	input	image1	times	the	double	obtained	by
calling	 getDouble 	with	a	prompt	of	“Factor?	“.
void	divide(	ActionData&	action_data	); 	Sets	output	image	to	input	image	1	divided	by	the	double
obtained	by	calling	 getDouble 	with	a	prompt	of	“Factor?	“.

Update	 image_menu.h 	and	 image_output.cpp
void	readUserImage2(	ActionData&	action_data	); 	Like	 readUserImage1 ,	but	stores	into	input	image	2.

Update	 controllers.cpp
The	following	functions	will	require	updates	to	their	implementations.

void	configureMenu(	MenuData&	menu_data	) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.

Table	of	New	Commands

Command	Name Function	Name Description
read2 readUserImage2 “Read	file	into	input	image	2.”
”+” plus “Set	output	image	from	sum	of	input	image	1	and	input	image	2.”
”+=” plusEquals “Set	input	image	1	by	adding	in	input	image	2.”
”-” minus “Set	output	image	from	difference	of	input	image	1	and	input	image	2.”
”-=” minusEquals “Set	input	image	1	by	subtracting	input	image	2.”
“*” times “Set	output	image	from	input	image	1	multiplied	by	a	number.”
“*=” timesEquals “Set	input	image	1	by	multiplying	by	a	number.”

”/” divide “Set	output	image	from	input	image	1	divided	by	a	number.”
”/=” divideEquals “Set	input	image	1	by	dividing	by	a	number.”

Update	 Makefile
This	file	must	now	also	include	a	rule	for	 clean .	The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all )
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation



C++	Reference
Examples	from	class
Digital	Image	Processing	on	Wikipedia

Sample	PPM	Images
Monet’s	Lilies
Van	Gogh’s	Starry	Night
Monet	+	Van	Gogh
Monet	-	Van	Gogh
Monet	*=	1.5
Van	Gogh	/=	2.0

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	additional	operators.

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://en.wikipedia.org/wiki/Digital_image_processing
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-monet-water-lilies.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-van-gogh-starry-night.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-monet+vangogh.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-monet-vangogh.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-monet-bright.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_06_ppm_operators/images/common-vangogh-dim.ppm

