
CS	3005:	Programming	in	C++
Image	Filters
This	assignment	requires	extending	the	text-based	application	for	working	with	images.	You	will	now	be	able
to	filter	images	using	some	grayscale	filters,	and	adding	some	primitive	2D	shapes.

Assignment
In	this	assignment,	you	will	update	the	program	from	the	previous	assignments	to	allow	the	user	to	create
PPM	images	by	filtering	images	with	grayscale	conversions,	and	by	adding	geometric	shapes	to	images.	All
of	the	previous	assignment’s	functionality	will	remain	intact.

The	linear	colorimetric	conversion	formula	is:	brightness	=	0.2126*red	+	0.7152*green	+	0.0722*blue.

Programming	Requirements
The	following	files	must	be	updated	or	created	and	stored	in	the	 src 	directory	of	your	repository.

Make	changes	as	described	below.

Update	 PPM.{h,cpp}
The	following	methods	must	be	declared	and	implemented	for	the	 PPM 	class.

void	grayFromChannel(PPM&	dst,	const	int&	src_channel)	const; 	Configures	the	meta-data	of	 dst 	to	be
the	same	as	the	meta-data	of	 *this .	The	meta-data	includes	the	height,	width,	and	maximum	color
value.	For	a	given	pixel	in	 *this ,	copy	the	 src_channel 	channel	value	into	all	three	channels	of	the	same
pixel	of	 dst .	For	example,	if	the	pixel	of	at	row	3	and	column	7	of	 *this 	has	a	blue	channel	value	of	18,
and	 src_channel 	is	2,	then	the	pixel	at	row	3	and	column	7	of	 dst 	will	have	red,	green,	and	blue	channel
values	set	to	18.
void	grayFromRed(PPM&	dst)	const; 	Calls	 grayFromChannel 	to	set	 dst 	from	the	red	channel.
void	grayFromGreen(PPM&	dst)	const; 	Calls	 grayFromChannel 	to	set	 dst 	from	the	green	channel.
void	grayFromBlue(PPM&	dst)	const; 	Calls	 grayFromChannel 	to	set	 dst 	from	the	blue	channel.
double	linearColorimetricPixelValue(const	int&	row,	const	int&	column)	const; 	Calculates	the	linear
colorimetric	value	for	the	pixel	at	 row ,	 column ,	and	returns	it.
void	grayFromLinearColorimetric(PPM&	dst)	const; 	Sets	 dst 	to	have	the	same	meta-data	as	 *this .	Sets
every	pixel	in	 dst 	to	have	all	channels	(Red,	Green	and	Blue)	set	to	the	linear	colorimetric	value
calculated	for	the	pixel	at	the	same	location	in	 *this .

Update	 image_menu.h 	add	 image_filters.cpp
The	follow	functions	must	be	declared	and	implemented.

void	grayFromRed(ActionData&	action_data); 	Sets	the	output	image	to	be	the	red	to	grayscale	filtered
copy	of	input	image	1.
void	grayFromGreen(ActionData&	action_data); 	Sets	the	output	image	to	be	the	green	to	grayscale	filtered
copy	of	input	image	1.
void	grayFromBlue(ActionData&	action_data); 	Sets	the	output	image	to	be	the	blue	to	grayscale	filtered
copy	of	input	image	1.
void	grayFromLinearColorimetric(ActionData&	action_data); 	Sets	the	output	image	to	be	the	linear
colorimetric	grayscale	filtered	copy	of	input	image	1.

Update	 image_menu.h 	add	 image_drawing.cpp
The	follow	functions	must	be	declared	and	implemented.

void	drawCircle(ActionData&	action_data); 	Asks	the	user	for	“Center	Row?	“,	“Center	Column?	“,
“Radius?	“,	“Red?	“,	“Green?	“,	and	“Blue?	“.	Then	fills	in	a	circle	shape	with	the	color	specified	by	the
red,	green	and	blue.	All	pixels	that	are	no	more	than	 radius 	pixels	from	the	center	should	be	set.
Distance	is	calculated	as	the	square	root	of	the	sum	of	row	difference	squared	and	column	difference
squared.	You	could	 #include	<cmath> 	and	use	 std::sqrt() 	to	calculate	the	square	root,	or	use	the	math
trick	shown	in	class.	Use	multiplication	(*)	to	square	values.	Note	that	 std::sqrt() 	will	return	a	 double
value,	so	use	the	correct	variable	type	to	store	the	result.	Make	changes	to	the	input	image	1.
void	drawBox(ActionData&	action_data); 	Asks	the	user	for	“Top	Row?	“,	“Left	Column?	“,	“Bottom	Row?	“,

“Right	Column?”,	“Red?	“,	“Green?	“,	and	“Blue?	“.	Then	fills	in	a	rectangle	shape	with	the	color
specified	by	the	red,	green	and	blue.	All	pixels	that	have	a	row	between	the	top	and	bottom	row
(inclusive)	and	between	the	left	and	right	column	(inclusive)	should	be	set.	Make	changes	to	the	input
image	1.

Update	 controllers.cpp
The	following	functions	will	require	updates	to	their	implementations.

void	configureMenu(MenuData&	menu_data) 	add	the	new	actions	with	the	names	and	descriptions	listed
below.

Table	of	New	Commands

Command
Name Function	Name Description

red-gray grayFromRed Set	output	image	by	grayscale	from	red	on	input	image	1.
green-gray grayFromGreen Set	output	image	by	grayscale	from	green	on	input	image	1.
blue-gray grayFromBlue Set	output	image	by	grayscale	from	blue	on	input	image	1.

linear-gray grayFromLinearColorimetric Set	output	image	by	linear	colorimetric	grayscale	on	inputimage	1.
circle drawCircle Draw	a	circle	shape	in	input	image	1.
box drawBox Draw	a	box	shape	in	input	image	1.

Update	 Makefile
This	file	must	now	also	include	a	rule	for	 clean .	The	following	commands	should	work	correctly.

make	hello 	-	builds	the	hello	program
make	questions_3 	-	builds	the	questions_3	program
make	ascii_image 	-	builds	the	ascii_image	program
make	image_file 	-	builds	the	image_file	program
make	ppm_menu 	-	builds	the	image_file	program
make	all 	-	builds	all	programs
make 	-	builds	all	programs	(same	as	 make	all)
make	clean 	-	removes	all	.o	files,	and	all	executable	programs

Additional	Documentation
C++	Reference
Examples	from	class
Grayscale	on	Wikipedia
Digital	Image	Processing	on	Wikipedia

Sample	PPM	Images
Color	Test	Pattern
Color	Test	Pattern	Red
Color	Test	Pattern	Green
Color	Test	Pattern	Blue
Color	Test	Pattern	Linear
Starry	Night
Starry	Night	Red
Starry	Night	Green
Starry	Night	Blue
Starry	Night	Linear	Colorimetric

Show	Off	Your	Work
To	receive	credit	for	this	assignment,	you	must

use	git	to	add,	commit	and	push	your	solution	to	your	repository	for	this	class.
successfully	pass	all	unit	tests	and	acceptance	tests

http://www.cplusplus.com/
http://computing.utahtech.edu/cs/3005/examples.php
https://en.wikipedia.org/wiki/Grayscale
https://en.wikipedia.org/wiki/Digital_image_processing
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/common-larsen-color-test-pattern.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/common-larsen-color-test-pattern-r.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/common-larsen-color-test-pattern-g.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/common-larsen-color-test-pattern-b.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/common-larsen-color-test-pattern-l.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/van-gogh-starry-night.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/van-gogh-starry-night-r.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/van-gogh-starry-night-g.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/van-gogh-starry-night-b.ppm
https://computing.utahtech.edu/cs/3005/assignments/assignment_07_image_filters/images/van-gogh-starry-night-l.ppm

Additionally,	the	program	must	build,	run	and	give	correct	output.

Extra	Challenges	(Not	Required)
Create	additional	image	processing	options.

