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Chapter 1

Operating system interfaces

The job of an operating system is to share a computer among multiple programs and to provide a
more useful set of services than the hardware alone supports. An operating system manages and
abstracts the low-level hardware, so that, for example, a word processor need not concern itself
with which type of disk hardware is being used. An operating system shares the hardware among
multiple programs so that they run (or appear to run) at the same time. Finally, operating systems
provide controlled ways for programs to interact, so that they can share data or work together.

An operating system provides services to user programs through an interface. Designing a good
interface turns out to be difficult. On the one hand, we would like the interface to be simple and
narrow because that makes it easier to get the implementation right. On the other hand, we may be
tempted to offer many sophisticated features to applications. The trick in resolving this tension is to
design interfaces that rely on a few mechanisms that can be combined to provide much generality.

This book uses a single operating system as a concrete example to illustrate operating system
concepts. That operating system, xv6, provides the basic interfaces introduced by Ken Thompson
and Dennis Ritchie’s Unix operating system [17], as well as mimicking Unix’s internal design.
Unix provides a narrow interface whose mechanisms combine well, offering a surprising degree
of generality. This interface has been so successful that modern operating systems—BSD, Linux,
macOS, Solaris, and even, to a lesser extent, Microsoft Windows—have Unix-like interfaces. Un-
derstanding xv6 is a good start toward understanding any of these systems and many others.

As Figure 1.1 shows, xv6 takes the traditional form of a kernel, a special program that provides
services to running programs. Each running program, called a process, has memory containing
instructions, data, and a stack. The instructions implement the program’s computation. The data
are the variables on which the computation acts. The stack organizes the program’s procedure calls.
A given computer typically has many processes but only a single kernel.

When a process needs to invoke a kernel service, it invokes a system call, one of the calls in
the operating system’s interface. The system call enters the kernel; the kernel performs the service
and returns. Thus a process alternates between executing in user space and kernel space.

As described in detail in subsequent chapters, the kernel uses the hardware protection mech-
anisms provided by a CPU1 to ensure that each process executing in user space can access only

1This text generally refers to the hardware element that executes a computation with the term CPU, an acronym
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Figure 1.1: A kernel and two user processes.

its own memory. The kernel executes with the hardware privileges required to implement these
protections; user programs execute without those privileges. When a user program invokes a sys-
tem call, the hardware raises the privilege level and starts executing a pre-arranged function in the
kernel.

The collection of system calls that a kernel provides is the interface that user programs see. The
xv6 kernel provides a subset of the services and system calls that Unix kernels traditionally offer.
Figure 1.2 lists all of xv6’s system calls.

The rest of this chapter outlines xv6’s services—processes, memory, file descriptors, pipes,
and a file system—and illustrates them with code snippets and discussions of how the shell, Unix’s
command-line user interface, uses them. The shell’s use of system calls illustrates how carefully
they have been designed.

The shell is an ordinary program that reads commands from the user and executes them. The
fact that the shell is a user program, and not part of the kernel, illustrates the power of the system
call interface: there is nothing special about the shell. It also means that the shell is easy to replace;
as a result, modern Unix systems have a variety of shells to choose from, each with its own user
interface and scripting features. The xv6 shell is a simple implementation of the essence of the
Unix Bourne shell. Its implementation can be found at (user/sh.c:1).

1.1 Processes and memory

An xv6 process consists of user-space memory (instructions, data, and stack) and per-process state
private to the kernel. Xv6 time-shares processes: it transparently switches the available CPUs
among the set of processes waiting to execute. When a process is not executing, xv6 saves the
process’s CPU registers, restoring them when it next runs the process. The kernel associates a
process identifier, or PID, with each process.

A process may create a new process using the fork system call. fork gives the new process
an exact copy of the calling process’s memory, both instructions and data. fork returns in both
the original and new processes. In the original process, fork returns the new process’s PID. In the
new process, fork returns zero. The original and new processes are often called the parent and
child.

for central processing unit. Other documentation (e.g., the RISC-V specification) also uses the words processor, core,
and hart instead of CPU.
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System call Description

int fork() Create a process, return child’s PID.
int exit(int status) Terminate the current process; status reported to wait(). No return.
int wait(int *status) Wait for a child to exit; exit status in *status; returns child PID.
int kill(int pid) Terminate process PID. Returns 0, or -1 for error.
int getpid() Return the current process’s PID.
int sleep(int n) Pause for n clock ticks.
int exec(char *file, char *argv[]) Load a file and execute it with arguments; only returns if error.
char *sbrk(int n) Grow process’s memory by n bytes. Returns start of new memory.
int open(char *file, int flags) Open a file; flags indicate read/write; returns an fd (file descriptor).
int write(int fd, char *buf, int n) Write n bytes from buf to file descriptor fd; returns n.
int read(int fd, char *buf, int n) Read n bytes into buf; returns number read; or 0 if end of file.
int close(int fd) Release open file fd.
int dup(int fd) Return a new file descriptor referring to the same file as fd.
int pipe(int p[]) Create a pipe, put read/write file descriptors in p[0] and p[1].
int chdir(char *dir) Change the current directory.
int mkdir(char *dir) Create a new directory.
int mknod(char *file, int, int) Create a device file.
int fstat(int fd, struct stat *st) Place info about an open file into *st.
int stat(char *file, struct stat *st) Place info about a named file into *st.
int link(char *file1, char *file2) Create another name (file2) for the file file1.
int unlink(char *file) Remove a file.

Figure 1.2: Xv6 system calls. If not otherwise stated, these calls return 0 for no error, and -1 if
there’s an error.

For example, consider the following program fragment written in the C programming lan-
guage [7]:

int pid = fork();
if(pid > 0){
printf("parent: child=%d\n", pid);
pid = wait((int *) 0);
printf("child %d is done\n", pid);

} else if(pid == 0){
printf("child: exiting\n");
exit(0);

} else {
printf("fork error\n");

}

The exit system call causes the calling process to stop executing and to release resources such as
memory and open files. Exit takes an integer status argument, conventionally 0 to indicate success
and 1 to indicate failure. The wait system call returns the PID of an exited (or killed) child of
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the current process and copies the exit status of the child to the address passed to wait; if none of
the caller’s children has exited, wait waits for one to do so. If the caller has no children, wait
immediately returns -1. If the parent doesn’t care about the exit status of a child, it can pass a 0
address to wait.

In the example, the output lines

parent: child=1234
child: exiting

might come out in either order (or even intermixed), depending on whether the parent or child gets
to its printf call first. After the child exits, the parent’s wait returns, causing the parent to print

parent: child 1234 is done

Although the child has the same memory contents as the parent initially, the parent and child are
executing with separate memory and separate registers: changing a variable in one does not affect
the other. For example, when the return value of wait is stored into pid in the parent process, it
doesn’t change the variable pid in the child. The value of pid in the child will still be zero.

The exec system call replaces the calling process’s memory with a new memory image loaded
from a file stored in the file system. The file must have a particular format, which specifies which
part of the file holds instructions, which part is data, at which instruction to start, etc. Xv6 uses the
ELF format, which Chapter 3 discusses in more detail. Usually the file is the result of compiling
a program’s source code. When exec succeeds, it does not return to the calling program; instead,
the instructions loaded from the file start executing at the entry point declared in the ELF header.
exec takes two arguments: the name of the file containing the executable and an array of string
arguments. For example:

char *argv[3];

argv[0] = "echo";
argv[1] = "hello";
argv[2] = 0;
exec("/bin/echo", argv);
printf("exec error\n");

This fragment replaces the calling program with an instance of the program /bin/echo running
with the argument list echo hello. Most programs ignore the first element of the argument array,
which is conventionally the name of the program.

The xv6 shell uses the above calls to run programs on behalf of users. The main structure of
the shell is simple; see main (user/sh.c:146). The main loop reads a line of input from the user with
getcmd. Then it calls fork, which creates a copy of the shell process. The parent calls wait,
while the child runs the command. For example, if the user had typed “echo hello” to the shell,
runcmd would have been called with “echo hello” as the argument. runcmd (user/sh.c:55) runs
the actual command. For “echo hello”, it would call exec (user/sh.c:79). If exec succeeds then
the child will execute instructions from echo instead of runcmd. At some point echo will call
exit, which will cause the parent to return from wait in main (user/sh.c:146).
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You might wonder why fork and exec are not combined in a single call; we will see later that
the shell exploits the separation in its implementation of I/O redirection. To avoid the wastefulness
of creating a duplicate process and then immediately replacing it (with exec), operating kernels
optimize the implementation of fork for this use case by using virtual memory techniques such
as copy-on-write (see Section 4.6).

Xv6 allocates most user-space memory implicitly: fork allocates the memory required for the
child’s copy of the parent’s memory, and exec allocates enough memory to hold the executable
file. A process that needs more memory at run-time (perhaps for malloc) can call sbrk(n) to
grow its data memory by n bytes; sbrk returns the location of the new memory.

1.2 I/O and File descriptors
A file descriptor is a small integer representing a kernel-managed object that a process may read
from or write to. A process may obtain a file descriptor by opening a file, directory, or device,
or by creating a pipe, or by duplicating an existing descriptor. For simplicity we’ll often refer
to the object a file descriptor refers to as a “file”; the file descriptor interface abstracts away the
differences between files, pipes, and devices, making them all look like streams of bytes. We’ll
refer to input and output as I/O.

Internally, the xv6 kernel uses the file descriptor as an index into a per-process table, so that
every process has a private space of file descriptors starting at zero. By convention, a process reads
from file descriptor 0 (standard input), writes output to file descriptor 1 (standard output), and
writes error messages to file descriptor 2 (standard error). As we will see, the shell exploits the
convention to implement I/O redirection and pipelines. The shell ensures that it always has three
file descriptors open (user/sh.c:152), which are by default file descriptors for the console.

The read and write system calls read bytes from and write bytes to open files named by file
descriptors. The call read(fd, buf, n) reads at most n bytes from the file descriptor fd, copies
them into buf, and returns the number of bytes read. Each file descriptor that refers to a file has an
offset associated with it. read reads data from the current file offset and then advances that offset
by the number of bytes read: a subsequent read will return the bytes following the ones returned
by the first read. When there are no more bytes to read, read returns zero to indicate the end of
the file.

The call write(fd, buf, n) writes n bytes from buf to the file descriptor fd and returns the
number of bytes written. Fewer than n bytes are written only when an error occurs. Like read,
write writes data at the current file offset and then advances that offset by the number of bytes
written: each write picks up where the previous one left off.

The following program fragment (which forms the essence of the program cat) copies data
from its standard input to its standard output. If an error occurs, it writes a message to the standard
error.

char buf[512];
int n;

for(;;){
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n = read(0, buf, sizeof buf);
if(n == 0)
break;

if(n < 0){
fprintf(2, "read error\n");
exit(1);

}
if(write(1, buf, n) != n){

fprintf(2, "write error\n");
exit(1);

}
}

The important thing to note in the code fragment is that cat doesn’t know whether it is reading
from a file, console, or a pipe. Similarly cat doesn’t know whether it is printing to a console, a
file, or whatever. The use of file descriptors and the convention that file descriptor 0 is input and
file descriptor 1 is output allows a simple implementation of cat.

The close system call releases a file descriptor, making it free for reuse by a future open,
pipe, or dup system call (see below). A newly allocated file descriptor is always the lowest-
numbered unused descriptor of the current process.

File descriptors and fork interact to make I/O redirection easy to implement. fork copies
the parent’s file descriptor table along with its memory, so that the child starts with exactly the
same open files as the parent. The system call exec replaces the calling process’s memory but
preserves its file table. This behavior allows the shell to implement I/O redirection by forking, re-
opening chosen file descriptors in the child, and then calling exec to run the new program. Here
is a simplified version of the code a shell runs for the command cat < input.txt:

char *argv[2];

argv[0] = "cat";
argv[1] = 0;
if(fork() == 0) {

close(0);
open("input.txt", O_RDONLY);
exec("cat", argv);

}

After the child closes file descriptor 0, open is guaranteed to use that file descriptor for the newly
opened input.txt: 0 will be the smallest available file descriptor. cat then executes with file
descriptor 0 (standard input) referring to input.txt. The parent process’s file descriptors are not
changed by this sequence, since it modifies only the child’s descriptors.

The code for I/O redirection in the xv6 shell works in exactly this way (user/sh.c:83). Recall that
at this point in the code the shell has already forked the child shell and that runcmd will call exec
to load the new program.

The second argument to open consists of a set of flags, expressed as bits, that control what
open does. The possible values are defined in the file control (fcntl) header (kernel/fcntl.h:1-5):
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O_RDONLY, O_WRONLY, O_RDWR, O_CREATE, and O_TRUNC, which instruct open to open the file
for reading, or for writing, or for both reading and writing, to create the file if it doesn’t exist, and
to truncate the file to zero length.

Now it should be clear why it is helpful that fork and exec are separate calls: between the
two, the shell has a chance to redirect the child’s I/O without disturbing the I/O setup of the main
shell. One could instead imagine a hypothetical combined forkexec system call, but the options
for doing I/O redirection with such a call seem awkward. The shell could modify its own I/O
setup before calling forkexec (and then un-do those modifications); or forkexec could take
instructions for I/O redirection as arguments; or (least attractively) every program like cat could
be taught to do its own I/O redirection.

Although fork copies the file descriptor table, each underlying file offset is shared between
parent and child. Consider this example:

if(fork() == 0) {
write(1, "hello ", 6);
exit(0);

} else {
wait(0);
write(1, "world\n", 6);

}

At the end of this fragment, the file attached to file descriptor 1 will contain the data hello world.
The write in the parent (which, thanks to wait, runs only after the child is done) picks up where
the child’s write left off. This behavior helps produce sequential output from sequences of shell
commands, like (echo hello; echo world) >output.txt.

The dup system call duplicates an existing file descriptor, returning a new one that refers to
the same underlying I/O object. Both file descriptors share an offset, just as the file descriptors
duplicated by fork do. This is another way to write hello world into a file:

fd = dup(1);
write(1, "hello ", 6);
write(fd, "world\n", 6);

Two file descriptors share an offset if they were derived from the same original file descriptor
by a sequence of fork and dup calls. Otherwise file descriptors do not share offsets, even if they
resulted from open calls for the same file. dup allows shells to implement commands like this:
ls existing-file non-existing-file > tmp1 2>&1. The 2>&1 tells the shell to give the
command a file descriptor 2 that is a duplicate of descriptor 1. Both the name of the existing file
and the error message for the non-existing file will show up in the file tmp1. The xv6 shell doesn’t
support I/O redirection for the error file descriptor, but now you know how to implement it.

File descriptors are a powerful abstraction, because they hide the details of what they are con-
nected to: a process writing to file descriptor 1 may be writing to a file, to a device like the console,
or to a pipe.
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1.3 Pipes
A pipe is a small kernel buffer exposed to processes as a pair of file descriptors, one for reading
and one for writing. Writing data to one end of the pipe makes that data available for reading from
the other end of the pipe. Pipes provide a way for processes to communicate.

The following example code runs the program wc with standard input connected to the read
end of a pipe.

int p[2];
char *argv[2];

argv[0] = "wc";
argv[1] = 0;

pipe(p);
if(fork() == 0) {

close(0);
dup(p[0]);
close(p[0]);
close(p[1]);
exec("/bin/wc", argv);

} else {
close(p[0]);
write(p[1], "hello world\n", 12);
close(p[1]);

}

The program calls pipe, which creates a new pipe and records the read and write file descriptors
in the array p. After fork, both parent and child have file descriptors referring to the pipe. The
child calls close and dup to make file descriptor zero refer to the read end of the pipe, closes the
file descriptors in p, and calls exec to run wc. When wc reads from its standard input, it reads from
the pipe. The parent closes the read side of the pipe, writes to the pipe, and then closes the write
side.

If no data is available, a read on a pipe waits for either data to be written or for all file descrip-
tors referring to the write end to be closed; in the latter case, read will return 0, just as if the end of
a data file had been reached. The fact that read blocks until it is impossible for new data to arrive
is one reason that it’s important for the child to close the write end of the pipe before executing
wc above: if one of wc ’s file descriptors referred to the write end of the pipe, wc would never see
end-of-file.

The xv6 shell implements pipelines such as grep fork sh.c | wc -l in a manner similar
to the above code (user/sh.c:101). The child process creates a pipe to connect the left end of the
pipeline with the right end. Then it calls fork and runcmd for the left end of the pipeline and
fork and runcmd for the right end, and waits for both to finish. The right end of the pipeline
may be a command that itself includes a pipe (e.g., a | b | c), which itself forks two new child
processes (one for b and one for c). Thus, the shell may create a tree of processes. The leaves
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of this tree are commands and the interior nodes are processes that wait until the left and right
children complete.

Pipes may seem no more powerful than temporary files: the pipeline

echo hello world | wc

could be implemented without pipes as

echo hello world >/tmp/xyz; wc </tmp/xyz

Pipes have at least three advantages over temporary files in this situation. First, pipes automatically
clean themselves up; with the file redirection, a shell would have to be careful to remove /tmp/xyz
when done. Second, pipes can pass arbitrarily long streams of data, while file redirection requires
enough free space on disk to store all the data. Third, pipes allow for parallel execution of pipeline
stages, while the file approach requires the first program to finish before the second starts.

1.4 File system
The xv6 file system provides data files, which contain uninterpreted byte arrays, and directories,
which contain named references to data files and other directories. The directories form a tree,
starting at a special directory called the root. A path like /a/b/c refers to the file or directory
named c inside the directory named b inside the directory named a in the root directory /. Paths
that don’t begin with / are evaluated relative to the calling process’s current directory, which can
be changed with the chdir system call. Both these code fragments open the same file (assuming
all the directories involved exist):

chdir("/a");
chdir("b");
open("c", O_RDONLY);

open("/a/b/c", O_RDONLY);

The first fragment changes the process’s current directory to /a/b; the second neither refers to nor
changes the process’s current directory.

There are system calls to create new files and directories: mkdir creates a new directory, open
with the O_CREATE flag creates a new data file, and mknod creates a new device file. This example
illustrates all three:

mkdir("/dir");
fd = open("/dir/file", O_CREATE|O_WRONLY);
close(fd);
mknod("/console", 1, 1);

mknod creates a special file that refers to a device. Associated with a device file are the major and
minor device numbers (the two arguments to mknod), which uniquely identify a kernel device.
When a process later opens a device file, the kernel diverts read and write system calls to the
kernel device implementation instead of passing them to the file system.
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A file’s name is distinct from the file itself; the same underlying file, called an inode, can have
multiple names, called links. Each link consists of an entry in a directory; the entry contains a file
name and a reference to an inode. An inode holds metadata about a file, including its type (file or
directory or device), its length, the location of the file’s content on disk, and the number of links to
a file.

The fstat system call retrieves information from the inode that a file descriptor refers to. It
fills in a struct stat, defined in stat.h (kernel/stat.h) as:

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEVICE 3 // Device

struct stat {
int dev; // File system’s disk device
uint ino; // Inode number
short type; // Type of file
short nlink; // Number of links to file
uint64 size; // Size of file in bytes

};

The link system call creates another file system name referring to the same inode as an exist-
ing file. This fragment creates a new file named both a and b.

open("a", O_CREATE|O_WRONLY);
link("a", "b");

Reading from or writing to a is the same as reading from or writing to b. Each inode is identified
by a unique inode number. After the code sequence above, it is possible to determine that a and b

refer to the same underlying contents by inspecting the result of fstat: both will return the same
inode number (ino), and the nlink count will be set to 2.

The unlink system call removes a name from the file system. The file’s inode and the disk
space holding its content are only freed when the file’s link count is zero and no file descriptors
refer to it. Thus adding

unlink("a");

to the last code sequence leaves the inode and file content accessible as b. Furthermore,

fd = open("/tmp/xyz", O_CREATE|O_RDWR);
unlink("/tmp/xyz");

is an idiomatic way to create a temporary inode with no name that will be cleaned up when the
process closes fd or exits.

Unix provides file utilities callable from the shell as user-level programs, for example mkdir,
ln, and rm. This design allows anyone to extend the command-line interface by adding new user-
level programs. In hindsight this plan seems obvious, but other systems designed at the time of
Unix often built such commands into the shell (and built the shell into the kernel).

One exception is cd, which is built into the shell (user/sh.c:161). cd must change the current
working directory of the shell itself. If cd were run as a regular command, then the shell would
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fork a child process, the child process would run cd, and cd would change the child ’s working
directory. The parent’s (i.e., the shell’s) working directory would not change.

1.5 Real world
Unix’s combination of “standard” file descriptors, pipes, and convenient shell syntax for operations
on them was a major advance in writing general-purpose reusable programs. The idea sparked a
culture of “software tools” that was responsible for much of Unix’s power and popularity, and the
shell was the first so-called “scripting language.” The Unix system call interface persists today in
systems like BSD, Linux, and macOS.

The Unix system call interface has been standardized through the Portable Operating System
Interface (POSIX) standard. Xv6 is not POSIX compliant: it is missing many system calls (in-
cluding basic ones such as lseek), and many of the system calls it does provide differ from the
standard. Our main goals for xv6 are simplicity and clarity while providing a simple UNIX-like
system-call interface. Several people have extended xv6 with a few more system calls and a sim-
ple C library in order to run basic Unix programs. Modern kernels, however, provide many more
system calls, and many more kinds of kernel services, than xv6. For example, they support net-
working, windowing systems, user-level threads, drivers for many devices, and so on. Modern
kernels evolve continuously and rapidly, and offer many features beyond POSIX.

Unix unified access to multiple types of resources (files, directories, and devices) with a single
set of file-name and file-descriptor interfaces. This idea can be extended to more kinds of resources;
a good example is Plan 9 [16], which applied the “resources are files” concept to networks, graph-
ics, and more. However, most Unix-derived operating systems have not followed this route.

The file system and file descriptors have been powerful abstractions. Even so, there are other
models for operating system interfaces. Multics, a predecessor of Unix, abstracted file storage in a
way that made it look like memory, producing a very different flavor of interface. The complexity
of the Multics design had a direct influence on the designers of Unix, who aimed to build something
simpler.

Xv6 does not provide a notion of users or of protecting one user from another; in Unix terms,
all xv6 processes run as root.

This book examines how xv6 implements its Unix-like interface, but the ideas and concepts
apply to more than just Unix. Any operating system must multiplex processes onto the underlying
hardware, isolate processes from each other, and provide mechanisms for controlled inter-process
communication. After studying xv6, you should be able to look at other, more complex operating
systems and see the concepts underlying xv6 in those systems as well.

1.6 Exercises
1. Write a program that uses UNIX system calls to “ping-pong” a byte between two processes

over a pair of pipes, one for each direction. Measure the program’s performance, in ex-
changes per second.
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Chapter 2

Operating system organization

A key requirement for an operating system is to support several activities at once. For example,
using the system call interface described in Chapter 1 a process can start new processes with fork.
The operating system must time-share the resources of the computer among these processes. For
example, even if there are more processes than there are hardware CPUs, the operating system
must ensure that all of the processes get a chance to execute. The operating system must also
arrange for isolation between the processes. That is, if one process has a bug and malfunctions, it
shouldn’t affect processes that don’t depend on the buggy process. Complete isolation, however,
is too strong, since it should be possible for processes to intentionally interact; pipelines are an
example. Thus an operating system must fulfill three requirements: multiplexing, isolation, and
interaction.

This chapter provides an overview of how operating systems are organized to achieve these
three requirements. It turns out there are many ways to do so, but this text focuses on mainstream
designs centered around a monolithic kernel, which is used by many Unix operating systems. This
chapter also provides an overview of an xv6 process, which is the unit of isolation in xv6, and the
creation of the first process when xv6 starts.

Xv6 runs on a multi-core1 RISC-V microprocessor, and much of its low-level functionality (for
example, its process implementation) is specific to RISC-V. RISC-V is a 64-bit CPU, and xv6 is
written in “LP64” C, which means long (L) and pointers (P) in the C programming language are 64
bits, but int is 32-bit. This book assumes the reader has done a bit of machine-level programming
on some architecture, and will introduce RISC-V-specific ideas as they come up. A useful reference
for RISC-V is “The RISC-V Reader: An Open Architecture Atlas” [15]. The user-level ISA [2] and
the privileged architecture [3] are the official specifications.

The CPU in a complete computer is surrounded by support hardware, much of it in the form
of I/O interfaces. Xv6 is written for the support hardware simulated by qemu’s “-machine virt”
option. This includes RAM, a ROM containing boot code, a serial connection to the user’s key-
board/screen, and a disk for storage.

1By “multi-core” this text means multiple CPUs that share memory but execute in parallel, each with its own set of
registers. This text sometimes uses the term multiprocessor as a synonym for multi-core, though multiprocessor can
also refer more specifically to a computer with several distinct processor chips.
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2.1 Abstracting physical resources
The first question one might ask when encountering an operating system is why have it at all? That
is, one could implement the system calls in Figure 1.2 as a library, with which applications link. In
this plan, each application could even have its own library tailored to its needs. Applications could
directly interact with hardware resources and use those resources in the best way for the application
(e.g., to achieve high or predictable performance). Some operating systems for embedded devices
or real-time systems are organized in this way.

The downside of this library approach is that, if there is more than one application running, the
applications must be well-behaved. For example, each application must periodically give up the
CPU so that other applications can run. Such a cooperative time-sharing scheme may be OK if all
applications trust each other and have no bugs. It’s more typical for applications to not trust each
other, and to have bugs, so one often wants stronger isolation than a cooperative scheme provides.

To achieve strong isolation it’s helpful to forbid applications from directly accessing sensitive
hardware resources, and instead to abstract the resources into services. For example, Unix applica-
tions interact with storage only through the file system’s open, read, write, and close system
calls, instead of reading and writing the disk directly. This provides the application with the con-
venience of pathnames, and it allows the operating system (as the implementer of the interface)
to manage the disk. Even if isolation is not a concern, programs that interact intentionally (or just
wish to keep out of each other’s way) are likely to find a file system a more convenient abstraction
than direct use of the disk.

Similarly, Unix transparently switches hardware CPUs among processes, saving and restor-
ing register state as necessary, so that applications don’t have to be aware of time sharing. This
transparency allows the operating system to share CPUs even if some applications are in infinite
loops.

As another example, Unix processes use exec to build up their memory image, instead of
directly interacting with physical memory. This allows the operating system to decide where to
place a process in memory; if memory is tight, the operating system might even store some of a
process’s data on disk. exec also provides users with the convenience of a file system to store
executable program images.

Many forms of interaction among Unix processes occur via file descriptors. Not only do file
descriptors abstract away many details (e.g., where data in a pipe or file is stored), they are also
defined in a way that simplifies interaction. For example, if one application in a pipeline fails, the
kernel generates an end-of-file signal for the next process in the pipeline.

The system-call interface in Figure 1.2 is carefully designed to provide both programmer con-
venience and the possibility of strong isolation. The Unix interface is not the only way to abstract
resources, but it has proven to be a very good one.

2.2 User mode, supervisor mode, and system calls
Strong isolation requires a hard boundary between applications and the operating system. If the
application makes a mistake, we don’t want the operating system to fail or other applications to
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fail. Instead, the operating system should be able to clean up the failed application and continue
running other applications. To achieve strong isolation, the operating system must arrange that
applications cannot modify (or even read) the operating system’s data structures and instructions
and that applications cannot access other processes’ memory.

CPUs provide hardware support for strong isolation. For example, RISC-V has three modes
in which the CPU can execute instructions: machine mode, supervisor mode, and user mode. In-
structions executing in machine mode have full privilege; a CPU starts in machine mode. Machine
mode is mostly intended for configuring a computer. Xv6 executes a few lines in machine mode
and then changes to supervisor mode.

In supervisor mode the CPU is allowed to execute privileged instructions: for example, en-
abling and disabling interrupts, reading and writing the register that holds the address of a page
table, etc. If an application in user mode attempts to execute a privileged instruction, then the CPU
doesn’t execute the instruction, but switches to supervisor mode so that supervisor-mode code can
terminate the application, because it did something it shouldn’t be doing. Figure 1.1 in Chapter 1
illustrates this organization. An application can execute only user-mode instructions (e.g., adding
numbers, etc.) and is said to be running in user space, while the software in supervisor mode can
also execute privileged instructions and is said to be running in kernel space. The software running
in kernel space (or in supervisor mode) is called the kernel.

An application that wants to invoke a kernel function (e.g., the read system call in xv6) must
transition to the kernel; an application cannot invoke a kernel function directly. CPUs provide a
special instruction that switches the CPU from user mode to supervisor mode and enters the kernel
at an entry point specified by the kernel. (RISC-V provides the ecall instruction for this purpose.)
Once the CPU has switched to supervisor mode, the kernel can then validate the arguments of the
system call (e.g., check if the address passed to the system call is part of the application’s memory),
decide whether the application is allowed to perform the requested operation (e.g., check if the
application is allowed to write the specified file), and then deny it or execute it. It is important that
the kernel control the entry point for transitions to supervisor mode; if the application could decide
the kernel entry point, a malicious application could, for example, enter the kernel at a point where
the validation of arguments is skipped.

2.3 Kernel organization
A key design question is what part of the operating system should run in supervisor mode. One
possibility is that the entire operating system resides in the kernel, so that the implementations of
all system calls run in supervisor mode. This organization is called a monolithic kernel.

In this organization the entire operating system runs with full hardware privilege. This organi-
zation is convenient because the OS designer doesn’t have to decide which part of the operating
system doesn’t need full hardware privilege. Furthermore, it is easier for different parts of the op-
erating system to cooperate. For example, an operating system might have a buffer cache that can
be shared both by the file system and the virtual memory system.

A downside of the monolithic organization is that the interfaces between different parts of the
operating system are often complex (as we will see in the rest of this text), and therefore it is
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Figure 2.1: A microkernel with a file-system server

easy for an operating system developer to make a mistake. In a monolithic kernel, a mistake is
fatal, because an error in supervisor mode will often cause the kernel to fail. If the kernel fails,
the computer stops working, and thus all applications fail too. The computer must reboot to start
again.

To reduce the risk of mistakes in the kernel, OS designers can minimize the amount of operating
system code that runs in supervisor mode, and execute the bulk of the operating system in user
mode. This kernel organization is called a microkernel.

Figure 2.1 illustrates this microkernel design. In the figure, the file system runs as a user-level
process. OS services running as processes are called servers. To allow applications to interact with
the file server, the kernel provides an inter-process communication mechanism to send messages
from one user-mode process to another. For example, if an application like the shell wants to read
or write a file, it sends a message to the file server and waits for a response.

In a microkernel, the kernel interface consists of a few low-level functions for starting applica-
tions, sending messages, accessing device hardware, etc. This organization allows the kernel to be
relatively simple, as most of the operating system resides in user-level servers.

In the real world, both monolithic kernels and microkernels are popular. Many Unix kernels
are monolithic. For example, Linux has a monolithic kernel, although some OS functions run as
user-level servers (e.g., the windowing system). Linux delivers high performance to OS-intensive
applications, partially because the subsystems of the kernel can be tightly integrated.

Operating systems such as Minix, L4, and QNX are organized as a microkernel with servers,
and have seen wide deployment in embedded settings. A variant of L4, seL4, is small enough that
it has been verified for memory safety and other security properties [8].

There is much debate among developers of operating systems about which organization is
better, and there is no conclusive evidence one way or the other. Furthermore, it depends much on
what “better” means: faster performance, smaller code size, reliability of the kernel, reliability of
the complete operating system (including user-level services), etc.

There are also practical considerations that may be more important than the question of which
organization. Some operating systems have a microkernel but run some of the user-level services
in kernel space for performance reasons. Some operating systems have monolithic kernels because
that is how they started and there is little incentive to move to a pure microkernel organization,
because new features may be more important than rewriting the existing operating system to fit a
microkernel design.

From this book’s perspective, microkernel and monolithic operating systems share many key
ideas. They implement system calls, they use page tables, they handle interrupts, they support
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File Description

bio.c Disk block cache for the file system.
console.c Connect to the user keyboard and screen.
entry.S Very first boot instructions.
exec.c exec() system call.
file.c File descriptor support.
fs.c File system.
kalloc.c Physical page allocator.
kernelvec.S Handle traps from kernel, and timer interrupts.
log.c File system logging and crash recovery.
main.c Control initialization of other modules during boot.
pipe.c Pipes.
plic.c RISC-V interrupt controller.
printf.c Formatted output to the console.
proc.c Processes and scheduling.
sleeplock.c Locks that yield the CPU.
spinlock.c Locks that don’t yield the CPU.
start.c Early machine-mode boot code.
string.c C string and byte-array library.
swtch.S Thread switching.
syscall.c Dispatch system calls to handling function.
sysfile.c File-related system calls.
sysproc.c Process-related system calls.
trampoline.S Assembly code to switch between user and kernel.
trap.c C code to handle and return from traps and interrupts.
uart.c Serial-port console device driver.
virtio_disk.c Disk device driver.
vm.c Manage page tables and address spaces.

Figure 2.2: Xv6 kernel source files.

processes, they use locks for concurrency control, they implement a file system, etc. This book
focuses on these core ideas.

Xv6 is implemented as a monolithic kernel, like most Unix operating systems. Thus, the xv6
kernel interface corresponds to the operating system interface, and the kernel implements the com-
plete operating system. Since xv6 doesn’t provide many services, its kernel is smaller than some
microkernels, but conceptually xv6 is monolithic.

2.4 Code: xv6 organization
The xv6 kernel source is in the kernel/ sub-directory. The source is divided into files, following
a rough notion of modularity; Figure 2.2 lists the files. The inter-module interfaces are defined in
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defs.h (kernel/defs.h).

2.5 Process overview
The unit of isolation in xv6 (as in other Unix operating systems) is a process. The process ab-
straction prevents one process from wrecking or spying on another process’s memory, CPU, file
descriptors, etc. It also prevents a process from wrecking the kernel itself, so that a process can’t
subvert the kernel’s isolation mechanisms. The kernel must implement the process abstraction
with care because a buggy or malicious application may trick the kernel or hardware into doing
something bad (e.g., circumventing isolation). The mechanisms used by the kernel to implement
processes include the user/supervisor mode flag, address spaces, and time-slicing of threads.

To help enforce isolation, the process abstraction provides the illusion to a program that it has
its own private machine. A process provides a program with what appears to be a private memory
system, or address space, which other processes cannot read or write. A process also provides the
program with what appears to be its own CPU to execute the program’s instructions.

Xv6 uses page tables (which are implemented by hardware) to give each process its own ad-
dress space. The RISC-V page table translates (or “maps”) a virtual address (the address that an
RISC-V instruction manipulates) to a physical address (an address that the CPU chip sends to main
memory).

Xv6 maintains a separate page table for each process that defines that process’s address space.
As illustrated in Figure 2.3, an address space includes the process’s user memory starting at virtual
address zero. Instructions come first, followed by global variables, then the stack, and finally a
“heap” area (for malloc) that the process can expand as needed. There are a number of factors
that limit the maximum size of a process’s address space: pointers on the RISC-V are 64 bits
wide; the hardware only uses the low 39 bits when looking up virtual addresses in page tables; and
xv6 only uses 38 of those 39 bits. Thus, the maximum address is 238 − 1 = 0x3fffffffff, which is
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MAXVA (kernel/riscv.h:363). At the top of the address space xv6 reserves a page for a trampoline and
a page mapping the process’s trapframe. Xv6 uses these two pages to transition into the kernel and
back; the trampoline page contains the code to transition in and out of the kernel and mapping the
trapframe is necessary to save/restore the state of the user process, as we will explain in Chapter 4.

The xv6 kernel maintains many pieces of state for each process, which it gathers into a struct proc

(kernel/proc.h:85). A process’s most important pieces of kernel state are its page table, its kernel
stack, and its run state. We’ll use the notation p->xxx to refer to elements of the proc structure;
for example, p->pagetable is a pointer to the process’s page table.

Each process has a thread of execution (or thread for short) that executes the process’s instruc-
tions. A thread can be suspended and later resumed. To switch transparently between processes,
the kernel suspends the currently running thread and resumes another process’s thread. Much of
the state of a thread (local variables, function call return addresses) is stored on the thread’s stacks.
Each process has two stacks: a user stack and a kernel stack (p->kstack). When the process is
executing user instructions, only its user stack is in use, and its kernel stack is empty. When the
process enters the kernel (for a system call or interrupt), the kernel code executes on the process’s
kernel stack; while a process is in the kernel, its user stack still contains saved data, but isn’t ac-
tively used. A process’s thread alternates between actively using its user stack and its kernel stack.
The kernel stack is separate (and protected from user code) so that the kernel can execute even if a
process has wrecked its user stack.

A process can make a system call by executing the RISC-V ecall instruction. This instruction
raises the hardware privilege level and changes the program counter to a kernel-defined entry point.
The code at the entry point switches to a kernel stack and executes the kernel instructions that
implement the system call. When the system call completes, the kernel switches back to the user
stack and returns to user space by calling the sret instruction, which lowers the hardware privilege
level and resumes executing user instructions just after the system call instruction. A process’s
thread can “block” in the kernel to wait for I/O, and resume where it left off when the I/O has
finished.

p->state indicates whether the process is allocated, ready to run, running, waiting for I/O, or
exiting.

p->pagetable holds the process’s page table, in the format that the RISC-V hardware ex-
pects. Xv6 causes the paging hardware to use a process’s p->pagetable when executing that
process in user space. A process’s page table also serves as the record of the addresses of the
physical pages allocated to store the process’s memory.

In summary, a process bundles two design ideas: an address space to give a process the illusion
of its own memory, and, a thread, to give the process the illusion of its own CPU. In xv6, a process
consists of one address space and one thread. In real operating systems a process may have more
than one thread to take advantage of multiple CPUs.

2.6 Code: starting xv6, the first process and system call
To make xv6 more concrete, we’ll outline how the kernel starts and runs the first process. The
subsequent chapters will describe the mechanisms that show up in this overview in more detail.
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When the RISC-V computer powers on, it initializes itself and runs a boot loader which is
stored in read-only memory. The boot loader loads the xv6 kernel into memory. Then, in machine
mode, the CPU executes xv6 starting at _entry (kernel/entry.S:7). The RISC-V starts with paging
hardware disabled: virtual addresses map directly to physical addresses.

The loader loads the xv6 kernel into memory at physical address 0x80000000. The reason it
places the kernel at 0x80000000 rather than 0x0 is because the address range 0x0:0x80000000
contains I/O devices.

The instructions at _entry set up a stack so that xv6 can run C code. Xv6 declares space
for an initial stack, stack0, in the file start.c (kernel/start.c:11). The code at _entry loads the
stack pointer register sp with the address stack0+4096, the top of the stack, because the stack
on RISC-V grows down. Now that the kernel has a stack, _entry calls into C code at start
(kernel/start.c:21).

The function start performs some configuration that is only allowed in machine mode, and
then switches to supervisor mode. To enter supervisor mode, RISC-V provides the instruction
mret. This instruction is most often used to return from a previous call from supervisor mode to
machine mode. start isn’t returning from such a call, and instead sets things up as if there had
been one: it sets the previous privilege mode to supervisor in the register mstatus, it sets the
return address to main by writing main’s address into the register mepc, disables virtual address
translation in supervisor mode by writing 0 into the page-table register satp, and delegates all
interrupts and exceptions to supervisor mode.

Before jumping into supervisor mode, start performs one more task: it programs the clock
chip to generate timer interrupts. With this housekeeping out of the way, start “returns” to super-
visor mode by calling mret. This causes the program counter to change to main (kernel/main.c:11).

After main (kernel/main.c:11) initializes several devices and subsystems, it creates the first pro-
cess by calling userinit (kernel/proc.c:233). The first process executes a small program written in
RISC-V assembly, which makes the first system call in xv6. initcode.S (user/initcode.S:3) loads
the number for the exec system call, SYS_EXEC (kernel/syscall.h:8), into register a7, and then calls
ecall to re-enter the kernel.

The kernel uses the number in register a7 in syscall (kernel/syscall.c:132) to call the desired
system call. The system call table (kernel/syscall.c:107) maps SYS_EXEC to sys_exec, which the
kernel invokes. As we saw in Chapter 1, exec replaces the memory and registers of the current
process with a new program (in this case, /init).

Once the kernel has completed exec, it returns to user space in the /init process. init
(user/init.c:15) creates a new console device file if needed and then opens it as file descriptors 0, 1,
and 2. Then it starts a shell on the console. The system is up.

2.7 Security Model
You may wonder how the operating system deals with buggy or malicious code. Because coping
with malice is strictly harder than dealing with accidental bugs, it’s reasonable to view this topic as
relating to security. Here’s a high-level view of typical security assumptions and goals in operating
system design.
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The operating system must assume that a process’s user-level code will do its best to wreck the
kernel or other processes. User code may try to dereference pointers outside its allowed address
space; it may attempt to execute any RISC-V instructions, even those not intended for user code;
it may try to read and write any RISC-V control register; it may try to directly access device
hardware; and it may pass clever values to system calls in an attempt to trick the kernel into
crashing or doing something stupid. The kernel’s goal to restrict each user processes so that all it
can do is read/write/execute its own user memory, use the 32 general-purpose RISC-V registers,
and affect the kernel and other processes in the ways that system calls are intended to allow. The
kernel must prevent any other actions. This is typically an absolute requirement in kernel design.

The expectations for the kernel’s own code are quite different. Kernel code is assumed to be
written by well-meaning and careful programmers. Kernel code is expected to be bug-free, and
certainly to contain nothing malicious. This assumption affects how we analyze kernel code. For
example, there are many internal kernel functions (e.g., the spin locks) that would cause serious
problems if kernel code used them incorrectly. When examining any specific piece of kernel code,
we’ll want to convince ourselves that it behaves correctly. We assume, however, that kernel code
in general is correctly written, and follows all the rules about use of the kernel’s own functions and
data structures. At the hardware level, the RISC-V CPU, RAM, disk, etc. are assumed to operate
as advertised in the documentation, with no hardware bugs.

Of course in real life things are not so straightforward. It’s difficult to prevent clever user code
from making a system unusable (or causing it to panic) by consuming kernel-protected resources
– disk space, CPU time, process table slots, etc. It’s usually impossible to write bug-free code or
design bug-free hardware; if the writers of malicious user code are aware of kernel or hardware
bugs, they will exploit them. Even in mature, widely-used kernels, such as Linux, people discover
new vulnerabilities continuously [1]. It’s worthwhile to design safeguards into the kernel against
the possibility that it has bugs: assertions, type checking, stack guard pages, etc. Finally, the dis-
tinction between user and kernel code is sometimes blurred: some privileged user-level processes
may provide essential services and effectively be part of the operating system, and in some oper-
ating systems privileged user code can insert new code into the kernel (as with Linux’s loadable
kernel modules).

2.8 Real world
Most operating systems have adopted the process concept, and most processes look similar to
xv6’s. Modern operating systems, however, support several threads within a process, to allow a
single process to exploit multiple CPUs. Supporting multiple threads in a process involves quite a
bit of machinery that xv6 doesn’t have, including potential interface changes (e.g., Linux’s clone,
a variant of fork), to control which aspects of a process threads share.

2.9 Exercises
1. Add a system call to xv6 that returns the amount of free memory available.
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Chapter 3

Page tables

Page tables are the most popular mechanism through which the operating system provides each
process with its own private address space and memory. Page tables determine what memory ad-
dresses mean, and what parts of physical memory can be accessed. They allow xv6 to isolate
different process’s address spaces and to multiplex them onto a single physical memory. Page ta-
bles are a popular design because they provide a level of indirection that allow operating systems
to perform many tricks. Xv6 performs a few tricks: mapping the same memory (a trampoline page)
in several address spaces, and guarding kernel and user stacks with an unmapped page. The rest of
this chapter explains the page tables that the RISC-V hardware provides and how xv6 uses them.

3.1 Paging hardware

As a reminder, RISC-V instructions (both user and kernel) manipulate virtual addresses. The ma-
chine’s RAM, or physical memory, is indexed with physical addresses. The RISC-V page table
hardware connects these two kinds of addresses, by mapping each virtual address to a physical
address.

Xv6 runs on Sv39 RISC-V, which means that only the bottom 39 bits of a 64-bit virtual address
are used; the top 25 bits are not used. In this Sv39 configuration, a RISC-V page table is logically
an array of 227 (134,217,728) page table entries (PTEs). Each PTE contains a 44-bit physical page
number (PPN) and some flags. The paging hardware translates a virtual address by using the top 27
bits of the 39 bits to index into the page table to find a PTE, and making a 56-bit physical address
whose top 44 bits come from the PPN in the PTE and whose bottom 12 bits are copied from the
original virtual address. Figure 3.1 shows this process with a logical view of the page table as a
simple array of PTEs (see Figure 3.2 for a fuller story). A page table gives the operating system
control over virtual-to-physical address translations at the granularity of aligned chunks of 4096
(212) bytes. Such a chunk is called a page.

In Sv39 RISC-V, the top 25 bits of a virtual address are not used for translation. The physical
address also has room for growth: there is room in the PTE format for the physical page number
to grow by another 10 bits. The designers of RISC-V chose these numbers based on technology
predictions. 239 bytes is 512 GB, which should be enough address space for applications running
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Figure 3.1: RISC-V virtual and physical addresses, with a simplified logical page table.

on RISC-V computers. 256 is enough physical memory space for the near future to fit many I/O
devices and DRAM chips. If more is needed, the RISC-V designers have defined Sv48 with 48-bit
virtual addresses [3].

As Figure 3.2 shows, a RISC-V CPU translates a virtual address into a physical in three steps.
A page table is stored in physical memory as a three-level tree. The root of the tree is a 4096-byte
page-table page that contains 512 PTEs, which contain the physical addresses for page-table pages
in the next level of the tree. Each of those pages contains 512 PTEs for the final level in the tree.
The paging hardware uses the top 9 bits of the 27 bits to select a PTE in the root page-table page,
the middle 9 bits to select a PTE in a page-table page in the next level of the tree, and the bottom
9 bits to select the final PTE. (In Sv48 RISC-V a page table has four levels, and bits 39 through 47
of a virtual address index into the top-level.)

If any of the three PTEs required to translate an address is not present, the paging hardware
raises a page-fault exception, leaving it up to the kernel to handle the exception (see Chapter 4).

The three-level structure of Figure 3.2 allows a memory-efficient way of recording PTEs, com-
pared to the single-level design of Figure 3.1. In the common case in which large ranges of virtual
addresses have no mappings, the three-level structure can omit entire page directories. For exam-
ple, if an application uses only a few pages starting at address zero, then the entries 1 through 511
of the top-level page directory are invalid, and the kernel doesn’t have to allocate pages those for
511 intermediate page directories. Furthermore, the kernel also doesn’t have to allocate pages for
the bottom-level page directories for those 511 intermediate page directories. So, in this example,
the three-level design saves 511 pages for intermediate page directories and 511 × 512 pages for
bottom-level page directories.

Although a CPU walks the three-level structure in hardware as part of executing a load or store
instruction, a potential downside of three levels is that the CPU must load three PTEs from memory
to perform the translation of the virtual address in the load/store instruction to a physical address.
To avoid the cost of loading PTEs from physical memory, a RISC-V CPU caches page table entries
in a Translation Look-aside Buffer (TLB).
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Figure 3.2: RISC-V address translation details.

Each PTE contains flag bits that tell the paging hardware how the associated virtual address is
allowed to be used. PTE_V indicates whether the PTE is present: if it is not set, a reference to the
page causes an exception (i.e., is not allowed). PTE_R controls whether instructions are allowed
to read to the page. PTE_W controls whether instructions are allowed to write to the page. PTE_X
controls whether the CPU may interpret the content of the page as instructions and execute them.
PTE_U controls whether instructions in user mode are allowed to access the page; if PTE_U is not
set, the PTE can be used only in supervisor mode. Figure 3.2 shows how it all works. The flags and
all other page hardware-related structures are defined in (kernel/riscv.h)

To tell a CPU to use a page table, the kernel must write the physical address of the root page-
table page into the satp register. A CPU will translate all addresses generated by subsequent
instructions using the page table pointed to by its own satp. Each CPU has its own satp so that
different CPUs can run different processes, each with a private address space described by its own
page table.

Typically a kernel maps all of physical memory into its page table so that it can read and write
any location in physical memory using load/store instructions. Since the page directories are in
physical memory, the kernel can program the content of a PTE in a page directory by writing to
the virtual address of the PTE using a standard store instruction.

A few notes about terms. Physical memory refers to storage cells in DRAM. A byte of physical
memory has an address, called a physical address. Instructions use only virtual addresses, which
the paging hardware translates to physical addresses, and then sends to the DRAM hardware to read
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or write storage. Unlike physical memory and virtual addresses, virtual memory isn’t a physical
object, but refers to the collection of abstractions and mechanisms the kernel provides to manage
physical memory and virtual addresses.
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Figure 3.3: On the left, xv6’s kernel address space. RWX refer to PTE read, write, and execute
permissions. On the right, the RISC-V physical address space that xv6 expects to see.

3.2 Kernel address space
Xv6 maintains one page table per process, describing each process’s user address space, plus a sin-
gle page table that describes the kernel’s address space. The kernel configures the layout of its ad-
dress space to give itself access to physical memory and various hardware resources at predictable
virtual addresses. Figure 3.3 shows how this layout maps kernel virtual addresses to physical ad-
dresses. The file (kernel/memlayout.h) declares the constants for xv6’s kernel memory layout.
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QEMU simulates a computer that includes RAM (physical memory) starting at physical ad-
dress 0x80000000 and continuing through at least 0x88000000, which xv6 calls PHYSTOP.
The QEMU simulation also includes I/O devices such as a disk interface. QEMU exposes the de-
vice interfaces to software as memory-mapped control registers that sit below 0x80000000 in the
physical address space. The kernel can interact with the devices by reading/writing these special
physical addresses; such reads and writes communicate with the device hardware rather than with
RAM. Chapter 4 explains how xv6 interacts with devices.

The kernel gets at RAM and memory-mapped device registers using “direct mapping;” that
is, mapping the resources at virtual addresses that are equal to the physical address. For example,
the kernel itself is located at KERNBASE=0x80000000 in both the virtual address space and in
physical memory. Direct mapping simplifies kernel code that reads or writes physical memory. For
example, when fork allocates user memory for the child process, the allocator returns the physical
address of that memory; fork uses that address directly as a virtual address when it is copying the
parent’s user memory to the child.

There are a couple of kernel virtual addresses that aren’t direct-mapped:

• The trampoline page. It is mapped at the top of the virtual address space; user page tables
have this same mapping. Chapter 4 discusses the role of the trampoline page, but we see
here an interesting use case of page tables; a physical page (holding the trampoline code) is
mapped twice in the virtual address space of the kernel: once at top of the virtual address
space and once with a direct mapping.

• The kernel stack pages. Each process has its own kernel stack, which is mapped high so
that below it xv6 can leave an unmapped guard page. The guard page’s PTE is invalid (i.e.,
PTE_V is not set), so that if the kernel overflows a kernel stack, it will likely cause an excep-
tion and the kernel will panic. Without a guard page an overflowing stack would overwrite
other kernel memory, resulting in incorrect operation. A panic crash is preferable.

While the kernel uses its stacks via the high-memory mappings, they are also accessible to the
kernel through a direct-mapped address. An alternate design might have just the direct mapping,
and use the stacks at the direct-mapped address. In that arrangement, however, providing guard
pages would involve unmapping virtual addresses that would otherwise refer to physical memory,
which would then be hard to use.

The kernel maps the pages for the trampoline and the kernel text with the permissions PTE_R
and PTE_X. The kernel reads and executes instructions from these pages. The kernel maps the other
pages with the permissions PTE_R and PTE_W, so that it can read and write the memory in those
pages. The mappings for the guard pages are invalid.

3.3 Code: creating an address space
Most of the xv6 code for manipulating address spaces and page tables resides in vm.c (ker-
nel/vm.c:1). The central data structure is pagetable_t, which is really a pointer to a RISC-V
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root page-table page; a pagetable_t may be either the kernel page table, or one of the per-
process page tables. The central functions are walk, which finds the PTE for a virtual address,
and mappages, which installs PTEs for new mappings. Functions starting with kvm manipulate
the kernel page table; functions starting with uvm manipulate a user page table; other functions are
used for both. copyout and copyin copy data to and from user virtual addresses provided as
system call arguments; they are in vm.c because they need to explicitly translate those addresses
in order to find the corresponding physical memory.

Early in the boot sequence, main calls kvminit (kernel/vm.c:54) to create the kernel’s page ta-
ble using kvmmake (kernel/vm.c:20). This call occurs before xv6 has enabled paging on the RISC-V,
so addresses refer directly to physical memory. kvmmake first allocates a page of physical mem-
ory to hold the root page-table page. Then it calls kvmmap to install the translations that the kernel
needs. The translations include the kernel’s instructions and data, physical memory up to PHYSTOP,
and memory ranges which are actually devices. proc_mapstacks (kernel/proc.c:33) allocates a
kernel stack for each process. It calls kvmmap to map each stack at the virtual address generated
by KSTACK, which leaves room for the invalid stack-guard pages.

kvmmap (kernel/vm.c:132) calls mappages (kernel/vm.c:143), which installs mappings into a
page table for a range of virtual addresses to a corresponding range of physical addresses. It does
this separately for each virtual address in the range, at page intervals. For each virtual address to
be mapped, mappages calls walk to find the address of the PTE for that address. It then initializes
the PTE to hold the relevant physical page number, the desired permissions (PTE_W, PTE_X, and/or
PTE_R), and PTE_V to mark the PTE as valid (kernel/vm.c:158).

walk (kernel/vm.c:86) mimics the RISC-V paging hardware as it looks up the PTE for a virtual
address (see Figure 3.2). walk descends the 3-level page table 9 bits at the time. It uses each
level’s 9 bits of virtual address to find the PTE of either the next-level page table or the final page
(kernel/vm.c:92). If the PTE isn’t valid, then the required page hasn’t yet been allocated; if the
alloc argument is set, walk allocates a new page-table page and puts its physical address in the
PTE. It returns the address of the PTE in the lowest layer in the tree (kernel/vm.c:102).

The above code depends on physical memory being direct-mapped into the kernel virtual ad-
dress space. For example, as walk descends levels of the page table, it pulls the (physical) address
of the next-level-down page table from a PTE (kernel/vm.c:94), and then uses that address as a
virtual address to fetch the PTE at the next level down (kernel/vm.c:92).

main calls kvminithart (kernel/vm.c:62) to install the kernel page table. It writes the phys-
ical address of the root page-table page into the register satp. After this the CPU will translate
addresses using the kernel page table. Since the kernel uses an identity mapping, the now virtual
address of the next instruction will map to the right physical memory address.

Each RISC-V CPU caches page table entries in a Translation Look-aside Buffer (TLB), and
when xv6 changes a page table, it must tell the CPU to invalidate corresponding cached TLB
entries. If it didn’t, then at some point later the TLB might use an old cached mapping, point-
ing to a physical page that in the meantime has been allocated to another process, and as a re-
sult, a process might be able to scribble on some other process’s memory. The RISC-V has an
instruction sfence.vma that flushes the current CPU’s TLB. Xv6 executes sfence.vma in
kvminithart after reloading the satp register, and in the trampoline code that switches to a
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user page table before returning to user space (kernel/trampoline.S:89).
It is also necessary to issue sfence.vma before changing satp, in order to wait for comple-

tion of all outstanding loads and stores. This wait ensures that preceding updates to the page table
have completed, and ensures that preceding loads and stores use the old page table, not the new
one.

To avoid flushing the complete TLB, RISC-V CPUs may support address space identifiers
(ASIDs) [3]. The kernel can then flush just the TLB entries for a particular address space. Xv6
does not use this feature.

3.4 Physical memory allocation

The kernel must allocate and free physical memory at run-time for page tables, user memory,
kernel stacks, and pipe buffers.

Xv6 uses the physical memory between the end of the kernel and PHYSTOP for run-time alloca-
tion. It allocates and frees whole 4096-byte pages at a time. It keeps track of which pages are free
by threading a linked list through the pages themselves. Allocation consists of removing a page
from the linked list; freeing consists of adding the freed page to the list.

3.5 Code: Physical memory allocator

The allocator resides in kalloc.c (kernel/kalloc.c:1). The allocator’s data structure is a free list
of physical memory pages that are available for allocation. Each free page’s list element is a
struct run (kernel/kalloc.c:17). Where does the allocator get the memory to hold that data struc-
ture? It store each free page’s run structure in the free page itself, since there’s nothing else stored
there. The free list is protected by a spin lock (kernel/kalloc.c:21-24). The list and the lock are
wrapped in a struct to make clear that the lock protects the fields in the struct. For now, ignore the
lock and the calls to acquire and release; Chapter 6 will examine locking in detail.

The function main calls kinit to initialize the allocator (kernel/kalloc.c:27). kinit initializes
the free list to hold every page between the end of the kernel and PHYSTOP. Xv6 ought to de-
termine how much physical memory is available by parsing configuration information provided
by the hardware. Instead xv6 assumes that the machine has 128 megabytes of RAM. kinit calls
freerange to add memory to the free list via per-page calls to kfree. A PTE can only refer to
a physical address that is aligned on a 4096-byte boundary (is a multiple of 4096), so freerange

uses PGROUNDUP to ensure that it frees only aligned physical addresses. The allocator starts with
no memory; these calls to kfree give it some to manage.

The allocator sometimes treats addresses as integers in order to perform arithmetic on them
(e.g., traversing all pages in freerange), and sometimes uses addresses as pointers to read and
write memory (e.g., manipulating the run structure stored in each page); this dual use of addresses
is the main reason that the allocator code is full of C type casts. The other reason is that freeing
and allocation inherently change the type of the memory.
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The function kfree (kernel/kalloc.c:47) begins by setting every byte in the memory being freed
to the value 1. This will cause code that uses memory after freeing it (uses “dangling references”)
to read garbage instead of the old valid contents; hopefully that will cause such code to break faster.
Then kfree prepends the page to the free list: it casts pa to a pointer to struct run, records the
old start of the free list in r->next, and sets the free list equal to r. kalloc removes and returns
the first element in the free list.

3.6 Process address space
Each process has a separate page table, and when xv6 switches between processes, it also changes
page tables. Figure 3.4 shows a process’s address space in more detail than Figure 2.3. A process’s
user memory starts at virtual address zero and can grow up to MAXVA (kernel/riscv.h:360), allowing
a process to address in principle 256 Gigabytes of memory.

A process’s address space consists of pages that contain the text of the program (which xv6
maps with the permissions PTE_R, PTE_X, and PTE_U), pages that contain the pre-initialized data
of the program, a page for the stack, and pages for the heap. Xv6 maps the data, stack, and heap
with the permissions PTE_R, PTE_W, and PTE_U.

Using permissions within a user address space is a common technique to harden a user process.
If the text were mapped with PTE_W, then a process could accidentally modify its own program;
for example, a programming error may cause the program to write to a null pointer, modifying
instructions at address 0, and then continue running, perhaps creating more havoc. To detect such
errors immediately, xv6 maps the text without PTE_W; if a program accidentally attempts to store
to address 0, the hardware will refuse to execute the store and raises a page fault (see Section 4.6).
The kernel then kills the process and prints out an informative message so that the developer can
track down the problem.

Similarly, by mapping data without PTE_X, a user program cannot accidentally jump to an
address in the program’s data and start executing at that address.

In the real world, hardening a process by setting permissions carefully also aids in defending
against security attacks. An adversary may feed carefully-constructed input to a program (e.g., a
Web server) that triggers a bug in the program in the hope of turning that bug into an exploit [14].
Setting permissions carefully and other techniques, such as randomizing of the layout of the user
address space, make such attacks harder.

The stack is a single page, and is shown with the initial contents as created by exec. Strings
containing the command-line arguments, as well as an array of pointers to them, are at the very
top of the stack. Just under that are values that allow a program to start at main as if the function
main(argc, argv) had just been called.

To detect a user stack overflowing the allocated stack memory, xv6 places an inaccessible guard
page right below the stack by clearing the PTE_U flag. If the user stack overflows and the process
tries to use an address below the stack, the hardware will generate a page-fault exception because
the guard page is inaccessible to a program running in user mode. A real-world operating system
might instead automatically allocate more memory for the user stack when it overflows.

When a process asks xv6 for more user memory, xv6 grows the process’s heap. Xv6 first uses
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Figure 3.4: A process’s user address space, with its initial stack.

kalloc to allocate physical pages. It then adds PTEs to the process’s page table that point to the
new physical pages. Xv6 sets the PTE_W, PTE_R, PTE_U, and PTE_V flags in these PTEs. Most
processes do not use the entire user address space; xv6 leaves PTE_V clear in unused PTEs.

We see here a few nice examples of use of page tables. First, different processes’ page tables
translate user addresses to different pages of physical memory, so that each process has private user
memory. Second, each process sees its memory as having contiguous virtual addresses starting at
zero, while the process’s physical memory can be non-contiguous. Third, the kernel maps a page
with trampoline code at the top of the user address space (without PTE_U), thus a single page of
physical memory shows up in all address spaces, but can be used only by the kernel.

3.7 Code: sbrk

sbrk is the system call for a process to shrink or grow its memory. The system call is implemented
by the function growproc (kernel/proc.c:260). growproc calls uvmalloc or uvmdealloc, de-
pending on whether n is positive or negative. uvmalloc (kernel/vm.c:226) allocates physical mem-
ory with kalloc, and adds PTEs to the user page table with mappages. uvmdealloc calls
uvmunmap (kernel/vm.c:171), which uses walk to find PTEs and kfree to free the physical
memory they refer to.

Xv6 uses a process’s page table not just to tell the hardware how to map user virtual addresses,
but also as the only record of which physical memory pages are allocated to that process. That is
the reason why freeing user memory (in uvmunmap) requires examination of the user page table.
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3.8 Code: exec
exec is a system call that replaces a process’s user address space with data read from a file, called
a binary or executable file. A binary is typically the output of the compiler and linker, and holds
machine instructions and program data. exec (kernel/exec.c:23) opens the named binary path using
namei (kernel/exec.c:36), which is explained in Chapter 8. Then, it reads the ELF header. Xv6
binaries are formatted in the widely-used ELF format, defined in (kernel/elf.h). An ELF binary
consists of an ELF header, struct elfhdr (kernel/elf.h:6), followed by a sequence of program
section headers, struct proghdr (kernel/elf.h:25). Each progvhdr describes a section of the
application that must be loaded into memory; xv6 programs have two program section headers:
one for instructions and one for data.

The first step is a quick check that the file probably contains an ELF binary. An ELF binary
starts with the four-byte “magic number” 0x7F, ‘E’, ‘L’, ‘F’, or ELF_MAGIC (kernel/elf.h:3). If
the ELF header has the right magic number, exec assumes that the binary is well-formed.

exec allocates a new page table with no user mappings with proc_pagetable (kernel/exec.c:49),
allocates memory for each ELF segment with uvmalloc (kernel/exec.c:65), and loads each segment
into memory with loadseg (kernel/exec.c:10). loadseg uses walkaddr to find the physical ad-
dress of the allocated memory at which to write each page of the ELF segment, and readi to read
from the file.

The program section header for /init, the first user program created with exec, looks like
this:

# objdump -p user/_init

user/_init: file format elf64-little

Program Header:
0x70000003 off 0x0000000000006bb0 vaddr 0x0000000000000000

paddr 0x0000000000000000 align 2**0
filesz 0x000000000000004a memsz 0x0000000000000000 flags r--

LOAD off 0x0000000000001000 vaddr 0x0000000000000000
paddr 0x0000000000000000 align 2**12

filesz 0x0000000000001000 memsz 0x0000000000001000 flags r-x
LOAD off 0x0000000000002000 vaddr 0x0000000000001000

paddr 0x0000000000001000 align 2**12
filesz 0x0000000000000010 memsz 0x0000000000000030 flags rw-

STACK off 0x0000000000000000 vaddr 0x0000000000000000
paddr 0x0000000000000000 align 2**4

filesz 0x0000000000000000 memsz 0x0000000000000000 flags rw-

We see that the text segment should be loaded at virtual address 0x0 in memory (without write
permissions) from content at offset 0x1000 in the file. We also see that the data should be loaded
at address 0x1000, which is at a page boundary, and without executable permissions.

A program section header’s filesz may be less than the memsz, indicating that the gap be-
tween them should be filled with zeroes (for C global variables) rather than read from the file. For
/init, the data filesz is 0x10 bytes and memsz is 0x30 bytes, and thus uvmalloc allocates
enough physical memory to hold 0x30 bytes, but reads only 0x10 bytes from the file /init.

40

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L23
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L36
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L6
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L25
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/elf.h#L3
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L49
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L65
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/exec.c#L10


Now exec allocates and initializes the user stack. It allocates just one stack page. exec copies
the argument strings to the top of the stack one at a time, recording the pointers to them in ustack.
It places a null pointer at the end of what will be the argv list passed to main. The first three entries
in ustack are the fake return program counter, argc, and argv pointer.

exec places an inaccessible page just below the stack page, so that programs that try to use
more than one page will fault. This inaccessible page also allows exec to deal with arguments
that are too large; in that situation, the copyout (kernel/vm.c:352) function that exec uses to copy
arguments to the stack will notice that the destination page is not accessible, and will return -1.

During the preparation of the new memory image, if exec detects an error like an invalid
program segment, it jumps to the label bad, frees the new image, and returns -1. exec must wait
to free the old image until it is sure that the system call will succeed: if the old image is gone, the
system call cannot return -1 to it. The only error cases in exec happen during the creation of the
image. Once the image is complete, exec can commit to the new page table (kernel/exec.c:125) and
free the old one (kernel/exec.c:129).

exec loads bytes from the ELF file into memory at addresses specified by the ELF file. Users
or processes can place whatever addresses they want into an ELF file. Thus exec is risky, because
the addresses in the ELF file may refer to the kernel, accidentally or on purpose. The consequences
for an unwary kernel could range from a crash to a malicious subversion of the kernel’s isolation
mechanisms (i.e., a security exploit). Xv6 performs a number of checks to avoid these risks. For
example if(ph.vaddr + ph.memsz < ph.vaddr) checks for whether the sum overflows a
64-bit integer. The danger is that a user could construct an ELF binary with a ph.vaddr that
points to a user-chosen address, and ph.memsz large enough that the sum overflows to 0x1000,
which will look like a valid value. In an older version of xv6 in which the user address space also
contained the kernel (but not readable/writable in user mode), the user could choose an address that
corresponded to kernel memory and would thus copy data from the ELF binary into the kernel. In
the RISC-V version of xv6 this cannot happen, because the kernel has its own separate page table;
loadseg loads into the process’s page table, not in the kernel’s page table.

It is easy for a kernel developer to omit a crucial check, and real-world kernels have a long
history of missing checks whose absence can be exploited by user programs to obtain kernel priv-
ileges. It is likely that xv6 doesn’t do a complete job of validating user-level data supplied to the
kernel, which a malicious user program might be able to exploit to circumvent xv6’s isolation.

3.9 Real world
Like most operating systems, xv6 uses the paging hardware for memory protection and mapping.
Most operating systems make far more sophisticated use of paging than xv6 by combining paging
and page-fault exceptions, which we will discuss in Chapter 4.

Xv6 is simplified by the kernel’s use of a direct map between virtual and physical addresses, and
by its assumption that there is physical RAM at address 0x8000000, where the kernel expects to be
loaded. This works with QEMU, but on real hardware it turns out to be a bad idea; real hardware
places RAM and devices at unpredictable physical addresses, so that (for example) there might
be no RAM at 0x8000000, where xv6 expect to be able to store the kernel. More serious kernel
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designs exploit the page table to turn arbitrary hardware physical memory layouts into predictable
kernel virtual address layouts.

RISC-V supports protection at the level of physical addresses, but xv6 doesn’t use that feature.
On machines with lots of memory it might make sense to use RISC-V’s support for “super

pages.” Small pages make sense when physical memory is small, to allow allocation and page-out
to disk with fine granularity. For example, if a program uses only 8 kilobytes of memory, giving
it a whole 4-megabyte super-page of physical memory is wasteful. Larger pages make sense on
machines with lots of RAM, and may reduce overhead for page-table manipulation.

The xv6 kernel’s lack of a malloc-like allocator that can provide memory for small objects
prevents the kernel from using sophisticated data structures that would require dynamic allocation.
A more elaborate kernel would likely allocate many different sizes of small blocks, rather than (as
in xv6) just 4096-byte blocks; a real kernel allocator would need to handle small allocations as
well as large ones.

Memory allocation is a perennial hot topic, the basic problems being efficient use of limited
memory and preparing for unknown future requests [9]. Today people care more about speed than
space efficiency.

3.10 Exercises
1. Parse RISC-V’s device tree to find the amount of physical memory the computer has.

2. Write a user program that grows its address space by one byte by calling sbrk(1). Run
the program and investigate the page table for the program before the call to sbrk and after
the call to sbrk. How much space has the kernel allocated? What does the PTE for the new
memory contain?

3. Modify xv6 to use super pages for the kernel.

4. Unix implementations of exec traditionally include special handling for shell scripts. If the
file to execute begins with the text #!, then the first line is taken to be a program to run to
interpret the file. For example, if exec is called to run myprog arg1 and myprog ’s first
line is #!/interp, then exec runs /interp with command line /interp myprog arg1.
Implement support for this convention in xv6.

5. Implement address space layout randomization for the kernel.
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Chapter 4

Traps and system calls

There are three kinds of event which cause the CPU to set aside ordinary execution of instructions
and force a transfer of control to special code that handles the event. One situation is a system
call, when a user program executes the ecall instruction to ask the kernel to do something for
it. Another situation is an exception: an instruction (user or kernel) does something illegal, such as
divide by zero or use an invalid virtual address. The third situation is a device interrupt, when a
device signals that it needs attention, for example when the disk hardware finishes a read or write
request.

This book uses trap as a generic term for these situations. Typically whatever code was execut-
ing at the time of the trap will later need to resume, and shouldn’t need to be aware that anything
special happened. That is, we often want traps to be transparent; this is particularly important for
device interrupts, which the interrupted code typically doesn’t expect. The usual sequence is that
a trap forces a transfer of control into the kernel; the kernel saves registers and other state so that
execution can be resumed; the kernel executes appropriate handler code (e.g., a system call imple-
mentation or device driver); the kernel restores the saved state and returns from the trap; and the
original code resumes where it left off.

Xv6 handles all traps in the kernel; traps are not delivered to user code. Handling traps in the
kernel is natural for system calls. It makes sense for interrupts since isolation demands that only
the kernel be allowed to use devices, and because the kernel is a convenient mechanism with which
to share devices among multiple processes. It also makes sense for exceptions since xv6 responds
to all exceptions from user space by killing the offending program.

Xv6 trap handling proceeds in four stages: hardware actions taken by the RISC-V CPU, some
assembly instructions that prepare the way for kernel C code, a C function that decides what to
do with the trap, and the system call or device-driver service routine. While commonality among
the three trap types suggests that a kernel could handle all traps with a single code path, it turns
out to be convenient to have separate code for three distinct cases: traps from user space, traps
from kernel space, and timer interrupts. Kernel code (assembler or C) that processes a trap is often
called a handler; the first handler instructions are usually written in assembler (rather than C) and
are sometimes called a vector.
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4.1 RISC-V trap machinery
Each RISC-V CPU has a set of control registers that the kernel writes to tell the CPU how to
handle traps, and that the kernel can read to find out about a trap that has occurred. The RISC-V
documents contain the full story [3]. riscv.h (kernel/riscv.h:1) contains definitions that xv6 uses.
Here’s an outline of the most important registers:

• stvec: The kernel writes the address of its trap handler here; the RISC-V jumps to the
address in stvec to handle a trap.

• sepc: When a trap occurs, RISC-V saves the program counter here (since the pc is then
overwritten with the value in stvec). The sret (return from trap) instruction copies sepc
to the pc. The kernel can write sepc to control where sret goes.

• scause: RISC-V puts a number here that describes the reason for the trap.

• sscratch: The trap handler code uses sscratch to help it avoid overwriting user registers
before saving them.

• sstatus: The SIE bit in sstatus controls whether device interrupts are enabled. If the
kernel clears SIE, the RISC-V will defer device interrupts until the kernel sets SIE. The SPP
bit indicates whether a trap came from user mode or supervisor mode, and controls to what
mode sret returns.

The above registers relate to traps handled in supervisor mode, and they cannot be read or
written in user mode. There is a similar set of control registers for traps handled in machine mode;
xv6 uses them only for the special case of timer interrupts.

Each CPU on a multi-core chip has its own set of these registers, and more than one CPU may
be handling a trap at any given time.

When it needs to force a trap, the RISC-V hardware does the following for all trap types (other
than timer interrupts):

1. If the trap is a device interrupt, and the sstatus SIE bit is clear, don’t do any of the
following.

2. Disable interrupts by clearing the SIE bit in sstatus.

3. Copy the pc to sepc.

4. Save the current mode (user or supervisor) in the SPP bit in sstatus.

5. Set scause to reflect the trap’s cause.

6. Set the mode to supervisor.

7. Copy stvec to the pc.
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8. Start executing at the new pc.

Note that the CPU doesn’t switch to the kernel page table, doesn’t switch to a stack in the
kernel, and doesn’t save any registers other than the pc. Kernel software must perform these tasks.
One reason that the CPU does minimal work during a trap is to provide flexibility to software;
for example, some operating systems omit a page table switch in some situations to increase trap
performance.

It’s worth thinking about whether any of the steps listed above could be omitted, perhaps in
search of faster traps. Though there are situations in which a simpler sequence can work, many
of the steps would be dangerous to omit in general. For example, suppose that the CPU didn’t
switch program counters. Then a trap from user space could switch to supervisor mode while still
running user instructions. Those user instructions could break user/kernel isolation, for example by
modifying the satp register to point to a page table that allowed accessing all of physical memory.
It is thus important that the CPU switch to a kernel-specified instruction address, namely stvec.

4.2 Traps from user space
Xv6 handles traps differently depending on whether the trap occurs while executing in the kernel
or in user code. Here is the story for traps from user code; Section 4.5 describes traps from kernel
code.

A trap may occur while executing in user space if the user program makes a system call (ecall
instruction), or does something illegal, or if a device interrupts. The high-level path of a trap from
user space is uservec (kernel/trampoline.S:21), then usertrap (kernel/trap.c:37); and when re-
turning, usertrapret (kernel/trap.c:90) and then userret (kernel/trampoline.S:101).

A major constraint on the design of xv6’s trap handling is the fact that the RISC-V hardware
does not switch page tables when it forces a trap. This means that the trap handler address in
stvec must have a valid mapping in the user page table, since that’s the page table in force when
the trap handling code starts executing. Furthermore, xv6’s trap handling code needs to switch to
the kernel page table; in order to be able to continue executing after that switch, the kernel page
table must also have a mapping for the handler pointed to by stvec.

Xv6 satisfies these requirements using a trampoline page. The trampoline page contains uservec,
the xv6 trap handling code that stvec points to. The trampoline page is mapped in every process’s
page table at address TRAMPOLINE, which is at the top of the virtual address space so that it will be
above memory that programs use for themselves. The trampoline page is also mapped at address
TRAMPOLINE in the kernel page table. See Figure 2.3 and Figure 3.3. Because the trampoline
page is mapped in the user page table, without the PTE_U flag, traps can start executing there in
supervisor mode. Because the trampoline page is mapped at the same address in the kernel address
space, the trap handler can continue to execute after it switches to the kernel page table.

The code for the uservec trap handler is in trampoline.S (kernel/trampoline.S:21). When
uservec starts, all 32 registers contain values owned by the interrupted user code. These 32
values need to be saved somewhere in memory, so that they can be restored when the trap returns
to user space. Storing to memory requires use of a register to hold the address, but at this point there
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are no general-purpose registers available! Luckily RISC-V provides a helping hand in the form of
the sscratch register. The csrw instruction at the start of uservec saves a0 in sscratch.
Now uservec has one register (a0) to play with.

uservec’s next task is to save the 32 user registers. The kernel allocates, for each process, a
page of memory for a trapframe structure that (among other things) has space to save the 32
user registers (kernel/proc.h:43). Because satp still refers to the user page table, uservec needs
the trapframe to be mapped in the user address space. Xv6 maps each process’s trapframe at virtual
address TRAPFRAME in that process’s user page table; TRAPFRAME is just below TRAMPOLINE.
The process’s p->trapframe also points to the trapframe, though at its physical address so the
kernel can use it through the kernel page table.

Thus uservec loads address TRAPFRAME into a0 and saves all the user registers there,
including the user’s a0, read back from sscratch.

The trapframe contains the address of the current process’s kernel stack, the current CPU’s
hartid, the address of the usertrap function, and the address of the kernel page table. uservec
retrieves these values, switches satp to the kernel page table, and calls usertrap.

The job of usertrap is to determine the cause of the trap, process it, and return (kernel/-
trap.c:37). It first changes stvec so that a trap while in the kernel will be handled by kernelvec
rather than uservec. It saves the sepc register (the saved user program counter), because
usertrap might call yield to switch to another process’s kernel thread, and that process might
return to user space, in the process of which it will modify sepc. If the trap is a system call,
usertrap calls syscall to handle it; if a device interrupt, devintr; otherwise it’s an ex-
ception, and the kernel kills the faulting process. The system call path adds four to the saved user
program counter because RISC-V, in the case of a system call, leaves the program pointer pointing
to the ecall instruction but user code needs to resume executing at the subsequent instruction.
On the way out, usertrap checks if the process has been killed or should yield the CPU (if this
trap is a timer interrupt).

The first step in returning to user space is the call to usertrapret (kernel/trap.c:90). This
function sets up the RISC-V control registers to prepare for a future trap from user space. This in-
volves changing stvec to refer to uservec, preparing the trapframe fields that uservec relies
on, and setting sepc to the previously saved user program counter. At the end, usertrapret
calls userret on the trampoline page that is mapped in both user and kernel page tables; the
reason is that assembly code in userret will switch page tables.

usertrapret’s call to userret passes a pointer to the process’s user page table in a0
(kernel/trampoline.S:101). userret switches satp to the process’s user page table. Recall that the
user page table maps both the trampoline page and TRAPFRAME, but nothing else from the kernel.
The trampoline page mapping at the same virtual address in user and kernel page tables allows
userret to keep executing after changing satp. From this point on, the only data userret
can use is the register contents and the content of the trapframe. userret loads the TRAPFRAME
address into a0, restores saved user registers from the trapframe via a0, restores the saved user
a0, and executes sret to return to user space.
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4.3 Code: Calling system calls
Chapter 2 ended with initcode.S invoking the exec system call (user/initcode.S:11). Let’s look
at how the user call makes its way to the exec system call’s implementation in the kernel.

initcode.S places the arguments for exec in registers a0 and a1, and puts the system call
number in a7. System call numbers match the entries in the syscalls array, a table of function
pointers (kernel/syscall.c:107). The ecall instruction traps into the kernel and causes uservec,
usertrap, and then syscall to execute, as we saw above.

syscall (kernel/syscall.c:132) retrieves the system call number from the saved a7 in the trapframe
and uses it to index into syscalls. For the first system call, a7 contains SYS_exec (ker-
nel/syscall.h:8), resulting in a call to the system call implementation function sys_exec.

When sys_exec returns, syscall records its return value in p->trapframe->a0. This will
cause the original user-space call to exec() to return that value, since the C calling convention
on RISC-V places return values in a0. System calls conventionally return negative numbers to
indicate errors, and zero or positive numbers for success. If the system call number is invalid,
syscall prints an error and returns −1.

4.4 Code: System call arguments
System call implementations in the kernel need to find the arguments passed by user code. Because
user code calls system call wrapper functions, the arguments are initially where the RISC-V C
calling convention places them: in registers. The kernel trap code saves user registers to the current
process’s trap frame, where kernel code can find them. The kernel functions argint, argaddr,
and argfd retrieve the n ’th system call argument from the trap frame as an integer, pointer, or a file
descriptor. They all call argraw to retrieve the appropriate saved user register (kernel/syscall.c:34).

Some system calls pass pointers as arguments, and the kernel must use those pointers to read
or write user memory. The exec system call, for example, passes the kernel an array of pointers
referring to string arguments in user space. These pointers pose two challenges. First, the user pro-
gram may be buggy or malicious, and may pass the kernel an invalid pointer or a pointer intended
to trick the kernel into accessing kernel memory instead of user memory. Second, the xv6 kernel
page table mappings are not the same as the user page table mappings, so the kernel cannot use
ordinary instructions to load or store from user-supplied addresses.

The kernel implements functions that safely transfer data to and from user-supplied addresses.
fetchstr is an example (kernel/syscall.c:25). File system calls such as exec use fetchstr to
retrieve string file-name arguments from user space. fetchstr calls copyinstr to do the hard
work.

copyinstr (kernel/vm.c:403) copies up to max bytes to dst from virtual address srcva in
the user page table pagetable. Since pagetable is not the current page table, copyinstr
uses walkaddr (which calls walk) to look up srcva in pagetable, yielding physical address
pa0. The kernel maps each physical RAM address to the corresponding kernel virtual address,
so copyinstr can directly copy string bytes from pa0 to dst. walkaddr (kernel/vm.c:109)
checks that the user-supplied virtual address is part of the process’s user address space, so programs

47

https://github.com/mit-pdos/xv6-riscv/blob/riscv//user/initcode.S#L11
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L107
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L132
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.h#L8
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.h#L8
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L34
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/syscall.c#L25
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L403
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/vm.c#L109


cannot trick the kernel into reading other memory. A similar function, copyout, copies data from
the kernel to a user-supplied address.

4.5 Traps from kernel space
Xv6 configures the CPU trap registers somewhat differently depending on whether user or kernel
code is executing. When the kernel is executing on a CPU, the kernel points stvec to the assembly
code at kernelvec (kernel/kernelvec.S:12). Since xv6 is already in the kernel, kernelvec can
rely on satp being set to the kernel page table, and on the stack pointer referring to a valid kernel
stack. kernelvec pushes all 32 registers onto the stack, from which it will later restore them so
that the interrupted kernel code can resume without disturbance.

kernelvec saves the registers on the stack of the interrupted kernel thread, which makes
sense because the register values belong to that thread. This is particularly important if the trap
causes a switch to a different thread – in that case the trap will actually return from the stack of the
new thread, leaving the interrupted thread’s saved registers safely on its stack.

kernelvec jumps to kerneltrap (kernel/trap.c:135) after saving registers. kerneltrap
is prepared for two types of traps: device interrupts and exceptions. It calls devintr (kernel/-
trap.c:178) to check for and handle the former. If the trap isn’t a device interrupt, it must be an
exception, and that is always a fatal error if it occurs in the xv6 kernel; the kernel calls panic and
stops executing.

If kerneltrap was called due to a timer interrupt, and a process’s kernel thread is running
(as opposed to a scheduler thread), kerneltrap calls yield to give other threads a chance to
run. At some point one of those threads will yield, and let our thread and its kerneltrap resume
again. Chapter 7 explains what happens in yield.

When kerneltrap’s work is done, it needs to return to whatever code was interrupted
by the trap. Because a yield may have disturbed sepc and the previous mode in sstatus,
kerneltrap saves them when it starts. It now restores those control registers and returns to
kernelvec (kernel/kernelvec.S:50). kernelvec pops the saved registers from the stack and ex-
ecutes sret, which copies sepc to pc and resumes the interrupted kernel code.

It’s worth thinking through how the trap return happens if kerneltrap called yield due to
a timer interrupt.

Xv6 sets a CPU’s stvec to kernelvec when that CPU enters the kernel from user space;
you can see this in usertrap (kernel/trap.c:29). There’s a window of time when the kernel has
started executing but stvec is still set to uservec, and it’s crucial that no device interrupt occur
during that window. Luckily the RISC-V always disables interrupts when it starts to take a trap,
and xv6 doesn’t enable them again until after it sets stvec.

4.6 Page-fault exceptions
Xv6’s response to exceptions is quite boring: if an exception happens in user space, the kernel
kills the faulting process. If an exception happens in the kernel, the kernel panics. Real operating
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systems often respond in much more interesting ways.
As an example, many kernels use page faults to implement copy-on-write (COW) fork. To

explain copy-on-write fork, consider xv6’s fork, described in Chapter 3. fork causes the child’s
initial memory content to be the same as the parent’s at the time of the fork. Xv6 implements fork
with uvmcopy (kernel/vm.c:306), which allocates physical memory for the child and copies the
parent’s memory into it. It would be more efficient if the child and parent could share the parent’s
physical memory. A straightforward implementation of this would not work, however, since it
would cause the parent and child to disrupt each other’s execution with their writes to the shared
stack and heap.

Parent and child can safely share physical memory by appropriate use of page-table permissions
and page faults. The CPU raises a page-fault exception when a virtual address is used that has no
mapping in the page table, or has a mapping whose PTE_V flag is clear, or a mapping whose
permission bits (PTE_R, PTE_W, PTE_X, PTE_U) forbid the operation being attempted. RISC-V
distinguishes three kinds of page fault: load page faults (when a load instruction cannot translate its
virtual address), store page faults (when a store instruction cannot translate its virtual address), and
instruction page faults (when the address in the program counter doesn’t translate). The scause
register indicates the type of the page fault and the stval register contains the address that couldn’t
be translated.

The basic plan in COW fork is for the parent and child to initially share all physical pages,
but for each to map them read-only (with the PTE_W flag clear). Parent and child can read from
the shared physical memory. If either writes a given page, the RISC-V CPU raises a page-fault
exception. The kernel’s trap handler responds by allocating a new page of physical memory and
copying into it the physical page that the faulted address maps to. The kernel changes the relevant
PTE in the faulting process’s page table to point to the copy and to allow writes as well as reads,
and then resumes the faulting process at the instruction that caused the fault. Because the PTE
allows writes, the re-executed instruction will now execute without a fault. Copy-on-write requires
book-keeping to help decide when physical pages can be freed, since each page can be referenced
by a varying number of page tables depending on the history of forks, page faults, execs, and exits.
This book-keeping allows an important optimization: if a process incurs a store page fault and the
physical page is only referred to from that process’s page table, no copy is needed.

Copy-on-write makes fork faster, since fork need not copy memory. Some of the memory
will have to be copied later, when written, but it’s often the case that most of the memory never
has to be copied. A common example is fork followed by exec: a few pages may be written after
the fork, but then the child’s exec releases the bulk of the memory inherited from the parent.
Copy-on-write fork eliminates the need to ever copy this memory. Furthermore, COW fork is
transparent: no modifications to applications are necessary for them to benefit.

The combination of page tables and page faults opens up a wide range of interesting possibil-
ities in addition to COW fork. Another widely-used feature is called lazy allocation, which has
two parts. First, when an application asks for more memory by calling sbrk, the kernel notes the
increase in size, but does not allocate physical memory and does not create PTEs for the new range
of virtual addresses. Second, on a page fault on one of those new addresses, the kernel allocates a
page of physical memory and maps it into the page table. Like COW fork, the kernel can implement
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lazy allocation transparently to applications.
Since applications often ask for more memory than they need, lazy allocation is a win: the

kernel doesn’t have to do any work at all for pages that the application never uses. Furthermore,
if the application is asking to grow the address space by a lot, then sbrk without lazy allocation
is expensive: if an application asks for a gigabyte of memory, the kernel has to allocate and zero
262,144 4096-byte pages. Lazy allocation allows this cost to be spread over time. On the other
hand, lazy allocation incurs the extra overhead of page faults, which involve a kernel/user transi-
tion. Operating systems can reduce this cost by allocating a batch of consecutive pages per page
fault instead of one page and by specializing the kernel entry/exit code for such page-faults.

Yet another widely-used feature that exploits page faults is demand paging. In exec, xv6 loads
all text and data of an application eagerly into memory. Since applications can be large and reading
from disk is expensive, this startup cost may be noticeable to users: when the user starts a large
application from the shell, it may take a long time before user sees a response. To improve response
time, a modern kernel creates the page table for the user address space, but marks the PTEs for the
pages invalid. On a page fault, the kernel reads the content of the page from disk and maps it into
the user address space. Like COW fork and lazy allocation, the kernel can implement this feature
transparently to applications.

The programs running on a computer may need more memory than the computer has RAM.
To cope gracefully, the operating system may implement paging to disk. The idea is to store only
a fraction of user pages in RAM, and to store the rest on disk in a paging area. The kernel marks
PTEs that correspond to memory stored in the paging area (and thus not in RAM) as invalid. If an
application tries to use one of the pages that has been paged out to disk, the application will incur
a page fault, and the page must be paged in: the kernel trap handler will allocate a page of physical
RAM, read the page from disk into the RAM, and modify the relevant PTE to point to the RAM.

What happens if a page needs to be paged in, but there is no free physical RAM? In that case,
the kernel must first free a physical page by paging it out or evicting it to the paging area on disk,
and marking the PTEs referring to that physical page as invalid. Eviction is expensive, so paging
performs best if it’s infrequent: if applications use only a subset of their memory pages and the
union of the subsets fits in RAM. This property is often referred to as having good locality of
reference. As with many virtual memory techniques, kernels usually implement paging to disk in
a way that’s transparent to applications.

Computers often operate with little or no free physical memory, regardless of how much RAM
the hardware provides. For example, cloud providers multiplex many customers on a single ma-
chine to use their hardware cost-effectively. As another example, users run many applications on
smart phones in a small amount of physical memory. In such settings allocating a page may require
first evicting an existing page. Thus, when free physical memory is scarce, allocation is expensive.

Lazy allocation and demand paging are particularly advantageous when free memory is scarce.
Eagerly allocating memory in sbrk or exec incurs the extra cost of eviction to make memory
available. Furthermore, there is a risk that the eager work is wasted, because before the application
uses the page, the operating system may have evicted it.

Other features that combine paging and page-fault exceptions include automatically extending
stacks and memory-mapped files.
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4.7 Real world
The trampoline and trapframe may seem excessively complex. A driving force is that the RISC-
V intentionally does as little as it can when forcing a trap, to allow the possibility of very fast
trap handling, which turns out to be important. As a result, the first few instructions of the kernel
trap handler effectively have to execute in the user environment: the user page table, and user
register contents. And the trap handler is initially ignorant of useful facts such as the identity of
the process that’s running or the address of the kernel page table. A solution is possible because
RISC-V provides protected places in which the kernel can stash away information before entering
user space: the sscratch register, and user page table entries that point to kernel memory but
are protected by lack of PTE_U. Xv6’s trampoline and trapframe exploit these RISC-V features.

The need for special trampoline pages could be eliminated if kernel memory were mapped
into every process’s user page table (with appropriate PTE permission flags). That would also
eliminate the need for a page table switch when trapping from user space into the kernel. That
in turn would allow system call implementations in the kernel to take advantage of the current
process’s user memory being mapped, allowing kernel code to directly dereference user pointers.
Many operating systems have used these ideas to increase efficiency. Xv6 avoids them in order to
reduce the chances of security bugs in the kernel due to inadvertent use of user pointers, and to
reduce some complexity that would be required to ensure that user and kernel virtual addresses
don’t overlap.

Production operating systems implement copy-on-write fork, lazy allocation, demand paging,
paging to disk, memory-mapped files, etc. Furthermore, production operating systems will try to
use all of physical memory, either for applications or caches (e.g., the buffer cache of the file
system, which we will cover later in Section 8.2). Xv6 is naïve in this regard: you want your
operating system to use the physical memory you paid for, but xv6 doesn’t. Furthermore, if xv6
runs out of memory, it returns an error to the running application or kills it, instead of, for example,
evicting a page of another application.

4.8 Exercises
1. The functions copyin and copyinstr walk the user page table in software. Set up

the kernel page table so that the kernel has the user program mapped, and copyin and
copyinstr can use memcpy to copy system call arguments into kernel space, relying on
the hardware to do the page table walk.

2. Implement lazy memory allocation.

3. Implement COW fork.

4. Is there a way to eliminate the special TRAPFRAME page mapping in every user address
space? For example, could uservec be modified to simply push the 32 user registers onto
the kernel stack, or store them in the proc structure?

5. Could xv6 be modified to eliminate the special TRAMPOLINE page mapping?
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Chapter 5

Interrupts and device drivers

A driver is the code in an operating system that manages a particular device: it configures the device
hardware, tells the device to perform operations, handles the resulting interrupts, and interacts with
processes that may be waiting for I/O from the device. Driver code can be tricky because a driver
executes concurrently with the device that it manages. In addition, the driver must understand the
device’s hardware interface, which can be complex and poorly documented.

Devices that need attention from the operating system can usually be configured to generate
interrupts, which are one type of trap. The kernel trap handling code recognizes when a device
has raised an interrupt and calls the driver’s interrupt handler; in xv6, this dispatch happens in
devintr (kernel/trap.c:178).

Many device drivers execute code in two contexts: a top half that runs in a process’s kernel
thread, and a bottom half that executes at interrupt time. The top half is called via system calls
such as read and write that want the device to perform I/O. This code may ask the hardware
to start an operation (e.g., ask the disk to read a block); then the code waits for the operation
to complete. Eventually the device completes the operation and raises an interrupt. The driver’s
interrupt handler, acting as the bottom half, figures out what operation has completed, wakes up a
waiting process if appropriate, and tells the hardware to start work on any waiting next operation.

5.1 Code: Console input
The console driver (kernel/console.c) is a simple illustration of driver structure. The console driver
accepts characters typed by a human, via the UART serial-port hardware attached to the RISC-V.
The console driver accumulates a line of input at a time, processing special input characters such as
backspace and control-u. User processes, such as the shell, use the read system call to fetch lines
of input from the console. When you type input to xv6 in QEMU, your keystrokes are delivered to
xv6 by way of QEMU’s simulated UART hardware.

The UART hardware that the driver talks to is a 16550 chip [13] emulated by QEMU. On a real
computer, a 16550 would manage an RS232 serial link connecting to a terminal or other computer.
When running QEMU, it’s connected to your keyboard and display.

The UART hardware appears to software as a set of memory-mapped control registers. That
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is, there are some physical addresses that RISC-V hardware connects to the UART device, so that
loads and stores interact with the device hardware rather than RAM. The memory-mapped ad-
dresses for the UART start at 0x10000000, or UART0 (kernel/memlayout.h:21). There are a handful
of UART control registers, each the width of a byte. Their offsets from UART0 are defined in
(kernel/uart.c:22). For example, the LSR register contain bits that indicate whether input characters
are waiting to be read by the software. These characters (if any) are available for reading from
the RHR register. Each time one is read, the UART hardware deletes it from an internal FIFO of
waiting characters, and clears the “ready” bit in LSR when the FIFO is empty. The UART transmit
hardware is largely independent of the receive hardware; if software writes a byte to the THR, the
UART transmit that byte.

Xv6’s main calls consoleinit (kernel/console.c:182) to initialize the UART hardware. This
code configures the UART to generate a receive interrupt when the UART receives each byte of
input, and a transmit complete interrupt each time the UART finishes sending a byte of output
(kernel/uart.c:53).

The xv6 shell reads from the console by way of a file descriptor opened by init.c (user/init.c:19).
Calls to the read system call make their way through the kernel to consoleread (kernel/con-
sole.c:80). consoleread waits for input to arrive (via interrupts) and be buffered in cons.buf,
copies the input to user space, and (after a whole line has arrived) returns to the user process. If
the user hasn’t typed a full line yet, any reading processes will wait in the sleep call (kernel/con-
sole.c:96) (Chapter 7 explains the details of sleep).

When the user types a character, the UART hardware asks the RISC-V to raise an interrupt,
which activates xv6’s trap handler. The trap handler calls devintr (kernel/trap.c:178), which looks
at the RISC-V scause register to discover that the interrupt is from an external device. Then it
asks a hardware unit called the PLIC [3] to tell it which device interrupted (kernel/trap.c:187). If it
was the UART, devintr calls uartintr.

uartintr (kernel/uart.c:176) reads any waiting input characters from the UART hardware and
hands them to consoleintr (kernel/console.c:136); it doesn’t wait for characters, since future
input will raise a new interrupt. The job of consoleintr is to accumulate input characters in
cons.buf until a whole line arrives. consoleintr treats backspace and a few other characters
specially. When a newline arrives, consoleintr wakes up a waiting consoleread (if there
is one).

Once woken, consoleread will observe a full line in cons.buf, copy it to user space, and
return (via the system call machinery) to user space.

5.2 Code: Console output
A write system call on a file descriptor connected to the console eventually arrives at uartputc
(kernel/uart.c:87). The device driver maintains an output buffer (uart_tx_buf) so that writing
processes do not have to wait for the UART to finish sending; instead, uartputc appends each
character to the buffer, calls uartstart to start the device transmitting (if it isn’t already), and
returns. The only situation in which uartputc waits is if the buffer is already full.

Each time the UART finishes sending a byte, it generates an interrupt. uartintr calls uartstart,
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which checks that the device really has finished sending, and hands the device the next buffered
output character. Thus if a process writes multiple bytes to the console, typically the first byte will
be sent by uartputc’s call to uartstart, and the remaining buffered bytes will be sent by
uartstart calls from uartintr as transmit complete interrupts arrive.

A general pattern to note is the decoupling of device activity from process activity via buffering
and interrupts. The console driver can process input even when no process is waiting to read it; a
subsequent read will see the input. Similarly, processes can send output without having to wait for
the device. This decoupling can increase performance by allowing processes to execute concur-
rently with device I/O, and is particularly important when the device is slow (as with the UART)
or needs immediate attention (as with echoing typed characters). This idea is sometimes called I/O
concurrency.

5.3 Concurrency in drivers
You may have noticed calls to acquire in consoleread and in consoleintr. These calls
acquire a lock, which protects the console driver’s data structures from concurrent access. There
are three concurrency dangers here: two processes on different CPUs might call consoleread
at the same time; the hardware might ask a CPU to deliver a console (really UART) interrupt while
that CPU is already executing inside consoleread; and the hardware might deliver a console
interrupt on a different CPU while consoleread is executing. These dangers may result in races
or deadlocks. Chapter 6 explores these problems and how locks can address them.

Another way in which concurrency requires care in drivers is that one process may be waiting
for input from a device, but the interrupt signaling arrival of the input may arrive when a different
process (or no process at all) is running. Thus interrupt handlers are not allowed to think about
the process or code that they have interrupted. For example, an interrupt handler cannot safely
call copyout with the current process’s page table. Interrupt handlers typically do relatively little
work (e.g., just copy the input data to a buffer), and wake up top-half code to do the rest.

5.4 Timer interrupts
Xv6 uses timer interrupts to maintain its clock and to enable it to switch among compute-bound
processes; the yield calls in usertrap and kerneltrap cause this switching. Timer inter-
rupts come from clock hardware attached to each RISC-V CPU. Xv6 programs this clock hardware
to interrupt each CPU periodically.

RISC-V requires that timer interrupts be taken in machine mode, not supervisor mode. RISC-
V machine mode executes without paging, and with a separate set of control registers, so it’s not
practical to run ordinary xv6 kernel code in machine mode. As a result, xv6 handles timer interrupts
completely separately from the trap mechanism laid out above.

Code executed in machine mode in start.c, before main, sets up to receive timer interrupts
(kernel/start.c:63). Part of the job is to program the CLINT hardware (core-local interruptor) to
generate an interrupt after a certain delay. Another part is to set up a scratch area, analogous to the

55

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/start.c#L63


trapframe, to help the timer interrupt handler save registers and the address of the CLINT registers.
Finally, start sets mtvec to timervec and enables timer interrupts.

A timer interrupt can occur at any point when user or kernel code is executing; there’s no way
for the kernel to disable timer interrupts during critical operations. Thus the timer interrupt handler
must do its job in a way guaranteed not to disturb interrupted kernel code. The basic strategy is for
the handler to ask the RISC-V to raise a “software interrupt” and immediately return. The RISC-V
delivers software interrupts to the kernel with the ordinary trap mechanism, and allows the kernel
to disable them. The code to handle the software interrupt generated by a timer interrupt can be
seen in devintr (kernel/trap.c:205).

The machine-mode timer interrupt handler is timervec (kernel/kernelvec.S:95). It saves a few
registers in the scratch area prepared by start, tells the CLINT when to generate the next timer
interrupt, asks the RISC-V to raise a software interrupt, restores registers, and returns. There’s no
C code in the timer interrupt handler.

5.5 Real world
Xv6 allows device and timer interrupts while executing in the kernel, as well as when executing
user programs. Timer interrupts force a thread switch (a call to yield) from the timer interrupt
handler, even when executing in the kernel. The ability to time-slice the CPU fairly among kernel
threads is useful if kernel threads sometimes spend a lot of time computing, without returning to
user space. However, the need for kernel code to be mindful that it might be suspended (due to
a timer interrupt) and later resume on a different CPU is the source of some complexity in xv6
(see Section 6.6). The kernel could be made somewhat simpler if device and timer interrupts only
occurred while executing user code.

Supporting all the devices on a typical computer in its full glory is much work, because there
are many devices, the devices have many features, and the protocol between device and driver can
be complex and poorly documented. In many operating systems, the drivers account for more code
than the core kernel.

The UART driver retrieves data a byte at a time by reading the UART control registers; this
pattern is called programmed I/O, since software is driving the data movement. Programmed I/O
is simple, but too slow to be used at high data rates. Devices that need to move lots of data at high
speed typically use direct memory access (DMA). DMA device hardware directly writes incoming
data to RAM, and reads outgoing data from RAM. Modern disk and network devices use DMA.
A driver for a DMA device would prepare data in RAM, and then use a single write to a control
register to tell the device to process the prepared data.

Interrupts make sense when a device needs attention at unpredictable times, and not too often.
But interrupts have high CPU overhead. Thus high speed devices, such as network and disk con-
trollers, use tricks that reduce the need for interrupts. One trick is to raise a single interrupt for a
whole batch of incoming or outgoing requests. Another trick is for the driver to disable interrupts
entirely, and to check the device periodically to see if it needs attention. This technique is called
polling. Polling makes sense if the device performs operations very quickly, but it wastes CPU
time if the device is mostly idle. Some drivers dynamically switch between polling and interrupts
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depending on the current device load.
The UART driver copies incoming data first to a buffer in the kernel, and then to user space.

This makes sense at low data rates, but such a double copy can significantly reduce performance
for devices that generate or consume data very quickly. Some operating systems are able to directly
move data between user-space buffers and device hardware, often with DMA.

As mentioned in Chapter 1, the console appears to applications as a regular file, and applica-
tions read input and write output using the read and write system calls. Applications may want
to control aspects of a device that cannot be expressed through the standard file system calls (e.g.,
enabling/disabling line buffering in the console driver). Unix operating systems support the ioctl
system call for such cases.

Some usages of computers require that the system must respond in a bounded time. For exam-
ple, in safety-critical systems missing a deadline can lead to disasters. Xv6 is not suitable for hard
real-time settings. Operating systems for hard real-time tend to be libraries that link with the appli-
cation in a way that allows for an analysis to determine the worst-case response time. Xv6 is also
not suitable for soft real-time applications, when missing a deadline occasionally is acceptable,
because xv6’s scheduler is too simplistic and it has kernel code path where interrupts are disabled
for a long time.

5.6 Exercises
1. Modify uart.c to not use interrupts at all. You may need to modify console.c as well.

2. Add a driver for an Ethernet card.
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Chapter 6

Locking

Most kernels, including xv6, interleave the execution of multiple activities. One source of inter-
leaving is multiprocessor hardware: computers with multiple CPUs executing independently, such
as xv6’s RISC-V. These multiple CPUs share physical RAM, and xv6 exploits the sharing to main-
tain data structures that all CPUs read and write. This sharing raises the possibility of one CPU
reading a data structure while another CPU is mid-way through updating it, or even multiple CPUs
updating the same data simultaneously; without careful design such parallel access is likely to
yield incorrect results or a broken data structure. Even on a uniprocessor, the kernel may switch
the CPU among a number of threads, causing their execution to be interleaved. Finally, a device
interrupt handler that modifies the same data as some interruptible code could damage the data
if the interrupt occurs at just the wrong time. The word concurrency refers to situations in which
multiple instruction streams are interleaved, due to multiprocessor parallelism, thread switching,
or interrupts.

Kernels are full of concurrently-accessed data. For example, two CPUs could simultaneously
call kalloc, thereby concurrently popping from the head of the free list. Kernel designers like
to allow for lots of concurrency, since it can yield increased performance through parallelism,
and increased responsiveness. However, as a result kernel designers must convince themselves of
correctness despite such concurrency. There are many ways to arrive at correct code, some easier
to reason about than others. Strategies aimed at correctness under concurrency, and abstractions
that support them, are called concurrency control techniques.

Xv6 uses a number of concurrency control techniques, depending on the situation; many more
are possible. This chapter focuses on a widely used technique: the lock. A lock provides mutual
exclusion, ensuring that only one CPU at a time can hold the lock. If the programmer associates a
lock with each shared data item, and the code always holds the associated lock when using an item,
then the item will be used by only one CPU at a time. In this situation, we say that the lock pro-
tects the data item. Although locks are an easy-to-understand concurrency control mechanism, the
downside of locks is that they can limit performance, because they serialize concurrent operations.

The rest of this chapter explains why xv6 needs locks, how xv6 implements them, and how it
uses them.

59



CPU CPU

l->next = list l->next = list

list

Memory

BUS

Figure 6.1: Simplified SMP architecture

6.1 Races

As an example of why we need locks, consider two processes with exited children calling wait on
two different CPUs. wait frees the child’s memory. Thus on each CPU, the kernel will call kfree
to free the children’s memory pages. The kernel allocator maintains a linked list: kalloc() (ker-
nel/kalloc.c:69) pops a page of memory from a list of free pages, and kfree() (kernel/kalloc.c:47)
pushes a page onto the free list. For best performance, we might hope that the kfrees of the
two parent processes would execute in parallel without either having to wait for the other, but this
would not be correct given xv6’s kfree implementation.

Figure 6.1 illustrates the setting in more detail: the linked list of free pages is in memory that is
shared by the two CPUs, which manipulate the list using load and store instructions. (In reality, the
processors have caches, but conceptually multiprocessor systems behave as if there were a single,
shared memory.) If there were no concurrent requests, you might implement a list push operation
as follows:

1 struct element {
2 int data;
3 struct element *next;
4 };
5
6 struct element *list = 0;
7
8 void
9 push(int data)

10 {
11 struct element *l;
12
13 l = malloc(sizeof *l);
14 l->data = data;
15 l->next = list;
16 list = l;
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Figure 6.2: Example race

17 }

This implementation is correct if executed in isolation. However, the code is not correct if more
than one copy executes concurrently. If two CPUs execute push at the same time, both might
execute line 15 as shown in Fig 6.1, before either executes line 16, which results in an incorrect
outcome as illustrated by Figure 6.2. There would then be two list elements with next set to the
former value of list. When the two assignments to list happen at line 16, the second one will
overwrite the first; the element involved in the first assignment will be lost.

The lost update at line 16 is an example of a race. A race is a situation in which a memory
location is accessed concurrently, and at least one access is a write. A race is often a sign of a bug,
either a lost update (if the accesses are writes) or a read of an incompletely-updated data structure.
The outcome of a race depends on the machine code generated by the compiler, the timing of
the two CPUs involved, and how their memory operations are ordered by the memory system,
which can make race-induced errors difficult to reproduce and debug. For example, adding print
statements while debugging push might change the timing of the execution enough to make the
race disappear.

The usual way to avoid races is to use a lock. Locks ensure mutual exclusion, so that only one
CPU at a time can execute the sensitive lines of push; this makes the scenario above impossible.
The correctly locked version of the above code adds just a few lines (highlighted in yellow):

6 struct element *list = 0;
7 struct lock listlock;
8
9 void

10 push(int data)
11 {
12 struct element *l;
13 l = malloc(sizeof *l);
14 l->data = data;
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15
16 acquire(&listlock);
17 l->next = list;
18 list = l;
19 release(&listlock);
20 }

The sequence of instructions between acquire and release is often called a critical section.
The lock is typically said to be protecting list.

When we say that a lock protects data, we really mean that the lock protects some collection
of invariants that apply to the data. Invariants are properties of data structures that are maintained
across operations. Typically, an operation’s correct behavior depends on the invariants being true
when the operation begins. The operation may temporarily violate the invariants but must reestab-
lish them before finishing. For example, in the linked list case, the invariant is that list points
at the first element in the list and that each element’s next field points at the next element. The
implementation of push violates this invariant temporarily: in line 17, l points to the next list
element, but list does not point at l yet (reestablished at line 18). The race we examined above
happened because a second CPU executed code that depended on the list invariants while they
were (temporarily) violated. Proper use of a lock ensures that only one CPU at a time can operate
on the data structure in the critical section, so that no CPU will execute a data structure operation
when the data structure’s invariants do not hold.

You can think of a lock as serializing concurrent critical sections so that they run one at a time,
and thus preserve invariants (assuming the critical sections are correct in isolation). You can also
think of critical sections guarded by the same lock as being atomic with respect to each other,
so that each sees only the complete set of changes from earlier critical sections, and never sees
partially-completed updates.

Though useful for correctness, locks inherently limit performance. For example, if two pro-
cesses call kfree concurrently, the locks will serialize the two critical sections, so that there is
no benefit from running them on different CPUs. We say that multiple processes conflict if they
want the same lock at the same time, or that the lock experiences contention. A major challenge in
kernel design is avoidance of lock contention in pursuit of parallelism. Xv6 does little of that, but
sophisticated kernels organize data structures and algorithms specifically to avoid lock contention.
In the list example, a kernel may maintain a separate free list per CPU and only touch another
CPU’s free list if the current CPU’s list is empty and it must steal memory from another CPU.
Other use cases may require more complicated designs.

The placement of locks is also important for performance. For example, it would be correct to
move acquire earlier in push, before line 13. But this would likely reduce performance because
then the calls to malloc would be serialized. The section “Using locks” below provides some
guidelines for where to insert acquire and release invocations.
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6.2 Code: Locks

Xv6 has two types of locks: spinlocks and sleep-locks. We’ll start with spinlocks. Xv6 represents
a spinlock as a struct spinlock (kernel/spinlock.h:2). The important field in the structure is
locked, a word that is zero when the lock is available and non-zero when it is held. Logically, xv6
should acquire a lock by executing code like

21 void
22 acquire(struct spinlock *lk) // does not work!
23 {
24 for(;;) {
25 if(lk->locked == 0) {
26 lk->locked = 1;
27 break;
28 }
29 }
30 }

Unfortunately, this implementation does not guarantee mutual exclusion on a multiprocessor. It
could happen that two CPUs simultaneously reach line 25, see that lk->locked is zero, and then
both grab the lock by executing line 26. At this point, two different CPUs hold the lock, which
violates the mutual exclusion property. What we need is a way to make lines 25 and 26 execute as
an atomic (i.e., indivisible) step.

Because locks are widely used, multi-core processors usually provide instructions that imple-
ment an atomic version of lines 25 and 26. On the RISC-V this instruction is amoswap r, a.
amoswap reads the value at the memory address a, writes the contents of register r to that address,
and puts the value it read into r. That is, it swaps the contents of the register and the memory
address. It performs this sequence atomically, using special hardware to prevent any other CPU
from using the memory address between the read and the write.

Xv6’s acquire (kernel/spinlock.c:22) uses the portable C library call __sync_lock_test_and_set,
which boils down to the amoswap instruction; the return value is the old (swapped) contents of
lk->locked. The acquire function wraps the swap in a loop, retrying (spinning) until it has
acquired the lock. Each iteration swaps one into lk->locked and checks the previous value; if
the previous value is zero, then we’ve acquired the lock, and the swap will have set lk->locked
to one. If the previous value is one, then some other CPU holds the lock, and the fact that we
atomically swapped one into lk->locked didn’t change its value.

Once the lock is acquired, acquire records, for debugging, the CPU that acquired the lock.
The lk->cpu field is protected by the lock and must only be changed while holding the lock.

The function release (kernel/spinlock.c:47) is the opposite of acquire: it clears the lk->cpu
field and then releases the lock. Conceptually, the release just requires assigning zero to lk->locked.
The C standard allows compilers to implement an assignment with multiple store instructions, so a
C assignment might be non-atomic with respect to concurrent code. Instead, release uses the C
library function __sync_lock_release that performs an atomic assignment. This function also
boils down to a RISC-V amoswap instruction.
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6.3 Code: Using locks
Xv6 uses locks in many places to avoid races. As described above, kalloc (kernel/kalloc.c:69) and
kfree (kernel/kalloc.c:47) form a good example. Try Exercises 1 and 2 to see what happens if those
functions omit the locks. You’ll likely find that it’s difficult to trigger incorrect behavior, suggesting
that it’s hard to reliably test whether code is free from locking errors and races. Xv6 may well have
as-yet-undiscovered races.

A hard part about using locks is deciding how many locks to use and which data and invariants
each lock should protect. There are a few basic principles. First, any time a variable can be written
by one CPU at the same time that another CPU can read or write it, a lock should be used to
keep the two operations from overlapping. Second, remember that locks protect invariants: if an
invariant involves multiple memory locations, typically all of them need to be protected by a single
lock to ensure the invariant is maintained.

The rules above say when locks are necessary but say nothing about when locks are unneces-
sary, and it is important for efficiency not to lock too much, because locks reduce parallelism. If
parallelism isn’t important, then one could arrange to have only a single thread and not worry about
locks. A simple kernel can do this on a multiprocessor by having a single lock that must be ac-
quired on entering the kernel and released on exiting the kernel (though blocking system calls such
as pipe reads or wait would pose a problem). Many uniprocessor operating systems have been
converted to run on multiprocessors using this approach, sometimes called a “big kernel lock,” but
the approach sacrifices parallelism: only one CPU can execute in the kernel at a time. If the kernel
does any heavy computation, it would be more efficient to use a larger set of more fine-grained
locks, so that the kernel could execute on multiple CPUs simultaneously.

As an example of coarse-grained locking, xv6’s kalloc.c allocator has a single free list pro-
tected by a single lock. If multiple processes on different CPUs try to allocate pages at the same
time, each will have to wait for its turn by spinning in acquire. Spinning wastes CPU time, since
it’s not useful work. If contention for the lock wasted a significant fraction of CPU time, perhaps
performance could be improved by changing the allocator design to have multiple free lists, each
with its own lock, to allow truly parallel allocation.

As an example of fine-grained locking, xv6 has a separate lock for each file, so that processes
that manipulate different files can often proceed without waiting for each other’s locks. The file
locking scheme could be made even more fine-grained if one wanted to allow processes to simul-
taneously write different areas of the same file. Ultimately lock granularity decisions need to be
driven by performance measurements as well as complexity considerations.

As subsequent chapters explain each part of xv6, they will mention examples of xv6’s use of
locks to deal with concurrency. As a preview, Figure 6.3 lists all of the locks in xv6.

6.4 Deadlock and lock ordering
If a code path through the kernel must hold several locks at the same time, it is important that all
code paths acquire those locks in the same order. If they don’t, there is a risk of deadlock. Let’s
say two code paths in xv6 need locks A and B, but code path 1 acquires locks in the order A then
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Lock Description

bcache.lock Protects allocation of block buffer cache entries
cons.lock Serializes access to console hardware, avoids intermixed output
ftable.lock Serializes allocation of a struct file in file table
itable.lock Protects allocation of in-memory inode entries
vdisk_lock Serializes access to disk hardware and queue of DMA descriptors
kmem.lock Serializes allocation of memory
log.lock Serializes operations on the transaction log
pipe’s pi->lock Serializes operations on each pipe
pid_lock Serializes increments of next_pid
proc’s p->lock Serializes changes to process’s state
wait_lock Helps wait avoid lost wakeups
tickslock Serializes operations on the ticks counter
inode’s ip->lock Serializes operations on each inode and its content
buf’s b->lock Serializes operations on each block buffer

Figure 6.3: Locks in xv6

B, and the other path acquires them in the order B then A. Suppose thread T1 executes code path 1
and acquires lock A, and thread T2 executes code path 2 and acquires lock B. Next T1 will try to
acquire lock B, and T2 will try to acquire lock A. Both acquires will block indefinitely, because in
both cases the other thread holds the needed lock, and won’t release it until its acquire returns. To
avoid such deadlocks, all code paths must acquire locks in the same order. The need for a global
lock acquisition order means that locks are effectively part of each function’s specification: callers
must invoke functions in a way that causes locks to be acquired in the agreed-on order.

Xv6 has many lock-order chains of length two involving per-process locks (the lock in each
struct proc) due to the way that sleep works (see Chapter 7). For example, consoleintr
(kernel/console.c:136) is the interrupt routine which handles typed characters. When a newline ar-
rives, any process that is waiting for console input should be woken up. To do this, consoleintr
holds cons.lock while calling wakeup, which acquires the waiting process’s lock in order to
wake it up. In consequence, the global deadlock-avoiding lock order includes the rule that cons.lock
must be acquired before any process lock. The file-system code contains xv6’s longest lock chains.
For example, creating a file requires simultaneously holding a lock on the directory, a lock on the
new file’s inode, a lock on a disk block buffer, the disk driver’s vdisk_lock, and the calling pro-
cess’s p->lock. To avoid deadlock, file-system code always acquires locks in the order mentioned
in the previous sentence.

Honoring a global deadlock-avoiding order can be surprisingly difficult. Sometimes the lock
order conflicts with logical program structure, e.g., perhaps code module M1 calls module M2, but
the lock order requires that a lock in M2 be acquired before a lock in M1. Sometimes the identities
of locks aren’t known in advance, perhaps because one lock must be held in order to discover the
identity of the lock to be acquired next. This kind of situation arises in the file system as it looks up
successive components in a path name, and in the code for wait and exit as they search the table
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of processes looking for child processes. Finally, the danger of deadlock is often a constraint on
how fine-grained one can make a locking scheme, since more locks often means more opportunity
for deadlock. The need to avoid deadlock is often a major factor in kernel implementation.

6.5 Re-entrant locks
It might appear that some deadlocks and lock-ordering challenges could be avoided by using re-
entrant locks, which are also called recursive locks. The idea is that if the lock is held by a process
and if that process attempts to acquire the lock again, then the kernel could just allow this (since
the process already has the lock), instead of calling panic, as the xv6 kernel does.

It turns out, however, that re-entrant locks make it harder to reason about concurrency: re-
entrant locks break the intuition that locks cause critical sections to be atomic with respect to other
critical sections. Consider the following two functions f and g:

struct spinlock lock;
int data = 0; // protected by lock

f() {
acquire(&lock);
if(data == 0){

call_once();
h();
data = 1;

}
release(&lock);

}

g() {
aquire(&lock);
if(data == 0){

call_once();
data = 1;

}
release(&lock);

}

Looking at this code fragment, the intuition is that call_once will be called only once: either
by f, or by g, but not by both.

But if re-entrant locks are allowed, and h happens to call g, call_once will be called twice.
If re-entrant locks aren’t allowed, then h calling g results in a deadlock, which is not great

either. But, assuming it would be a serious error to call call_once, a deadlock is preferable. The
kernel developer will observe the deadlock (the kernel panics) and can fix the code to avoid it,
while calling call_once twice may silently result in an error that is difficult to track down.

For this reason, xv6 uses the simpler to understand non-re-entrant locks. As long as program-
mers keep the locking rules in mind, however, either approach can be made to work. If xv6 were to
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use re-entrant locks, one would have to modify acquire to notice that the lock is currently held
by the calling thread. One would also have to add a count of nested acquires to struct spinlock, in
similar style to push_off, which is discussed next.

6.6 Locks and interrupt handlers

Some xv6 spinlocks protect data that is used by both threads and interrupt handlers. For example,
the clockintr timer interrupt handler might increment ticks (kernel/trap.c:164) at about the same
time that a kernel thread reads ticks in sys_sleep (kernel/sysproc.c:59). The lock tickslock

serializes the two accesses.
The interaction of spinlocks and interrupts raises a potential danger. Suppose sys_sleep holds

tickslock, and its CPU is interrupted by a timer interrupt. clockintr would try to acquire
tickslock, see it was held, and wait for it to be released. In this situation, tickslock will
never be released: only sys_sleep can release it, but sys_sleep will not continue running until
clockintr returns. So the CPU will deadlock, and any code that needs either lock will also freeze.

To avoid this situation, if a spinlock is used by an interrupt handler, a CPU must never hold
that lock with interrupts enabled. Xv6 is more conservative: when a CPU acquires any lock, xv6
always disables interrupts on that CPU. Interrupts may still occur on other CPUs, so an interrupt’s
acquire can wait for a thread to release a spinlock; just not on the same CPU.

Xv6 re-enables interrupts when a CPU holds no spinlocks; it must do a little book-keeping to
cope with nested critical sections. acquire calls push_off (kernel/spinlock.c:89) and release

calls pop_off (kernel/spinlock.c:100) to track the nesting level of locks on the current CPU. When
that count reaches zero, pop_off restores the interrupt enable state that existed at the start of the
outermost critical section. The intr_off and intr_on functions execute RISC-V instructions to
disable and enable interrupts, respectively.

It is important that acquire call push_off strictly before setting lk->locked (kernel/spin-
lock.c:28). If the two were reversed, there would be a brief window when the lock was held with
interrupts enabled, and an unfortunately timed interrupt would deadlock the system. Similarly, it is
important that release call pop_off only after releasing the lock (kernel/spinlock.c:66).

6.7 Instruction and memory ordering

It is natural to think of programs executing in the order in which source code statements appear.
That’s a reasonable mental model for single-threaded code, but is incorrect when multiple threads
interact through shared memory [2, 4]. One reason is that compilers emit load and store instructions
in orders different from those implied by the source code, and may entirely omit them (for example
by caching data in registers). Another reason is that the CPU may execute instructions out of order
to increase performance. For example, a CPU may notice that in a serial sequence of instructions
A and B are not dependent on each other. The CPU may start instruction B first, either because its
inputs are ready before A’s inputs, or in order to overlap execution of A and B.
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As an example of what could go wrong, in this code for push, it would be a disaster if the
compiler or CPU moved the store corresponding to line 4 to a point after the release on line 6:

1 l = malloc(sizeof *l);
2 l->data = data;
3 acquire(&listlock);
4 l->next = list;
5 list = l;
6 release(&listlock);

If such a re-ordering occurred, there would be a window during which another CPU could acquire
the lock and observe the updated list, but see an uninitialized list->next.

The good news is that compilers and CPUs help concurrent programmers by following a set
of rules called the memory model, and by providing some primitives to help programmers control
re-ordering.

To tell the hardware and compiler not to re-order, xv6 uses __sync_synchronize() in both
acquire (kernel/spinlock.c:22) and release (kernel/spinlock.c:47). __sync_synchronize() is a
memory barrier: it tells the compiler and CPU to not reorder loads or stores across the barrier. The
barriers in xv6’s acquire and release force order in almost all cases where it matters, since xv6
uses locks around accesses to shared data. Chapter 9 discusses a few exceptions.

6.8 Sleep locks

Sometimes xv6 needs to hold a lock for a long time. For example, the file system (Chapter 8) keeps
a file locked while reading and writing its content on the disk, and these disk operations can take
tens of milliseconds. Holding a spinlock that long would lead to waste if another process wanted to
acquire it, since the acquiring process would waste CPU for a long time while spinning. Another
drawback of spinlocks is that a process cannot yield the CPU while retaining a spinlock; we’d like
to do this so that other processes can use the CPU while the process with the lock waits for the disk.
Yielding while holding a spinlock is illegal because it might lead to deadlock if a second thread then
tried to acquire the spinlock; since acquire doesn’t yield the CPU, the second thread’s spinning
might prevent the first thread from running and releasing the lock. Yielding while holding a lock
would also violate the requirement that interrupts must be off while a spinlock is held. Thus we’d
like a type of lock that yields the CPU while waiting to acquire, and allows yields (and interrupts)
while the lock is held.

Xv6 provides such locks in the form of sleep-locks. acquiresleep (kernel/sleeplock.c:22)
yields the CPU while waiting, using techniques that will be explained in Chapter 7. At a high
level, a sleep-lock has a locked field that is protected by a spinlock, and acquiresleep ’s call
to sleep atomically yields the CPU and releases the spinlock. The result is that other threads can
execute while acquiresleep waits.

Because sleep-locks leave interrupts enabled, they cannot be used in interrupt handlers. Be-
cause acquiresleep may yield the CPU, sleep-locks cannot be used inside spinlock critical
sections (though spinlocks can be used inside sleep-lock critical sections).
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Spin-locks are best suited to short critical sections, since waiting for them wastes CPU time;
sleep-locks work well for lengthy operations.

6.9 Real world

Programming with locks remains challenging despite years of research into concurrency primitives
and parallelism. It is often best to conceal locks within higher-level constructs like synchronized
queues, although xv6 does not do this. If you program with locks, it is wise to use a tool that
attempts to identify races, because it is easy to miss an invariant that requires a lock.

Most operating systems support POSIX threads (Pthreads), which allow a user process to have
several threads running concurrently on different CPUs. Pthreads has support for user-level locks,
barriers, etc. Pthreads also allows a programmer to optionally specify that a lock should be re-
entrant.

Supporting Pthreads at user level requires support from the operating system. For example, it
should be the case that if one pthread blocks in a system call, another pthread of the same process
should be able to run on that CPU. As another example, if a pthread changes its process’s address
space (e.g., maps or unmaps memory), the kernel must arrange that other CPUs that run threads of
the same process update their hardware page tables to reflect the change in the address space.

It is possible to implement locks without atomic instructions [10], but it is expensive, and most
operating systems use atomic instructions.

Locks can be expensive if many CPUs try to acquire the same lock at the same time. If one
CPU has a lock cached in its local cache, and another CPU must acquire the lock, then the atomic
instruction to update the cache line that holds the lock must move the line from the one CPU’s
cache to the other CPU’s cache, and perhaps invalidate any other copies of the cache line. Fetching
a cache line from another CPU’s cache can be orders of magnitude more expensive than fetching a
line from a local cache.

To avoid the expenses associated with locks, many operating systems use lock-free data struc-
tures and algorithms [6, 12]. For example, it is possible to implement a linked list like the one in the
beginning of the chapter that requires no locks during list searches, and one atomic instruction to
insert an item in a list. Lock-free programming is more complicated, however, than programming
locks; for example, one must worry about instruction and memory reordering. Programming with
locks is already hard, so xv6 avoids the additional complexity of lock-free programming.

6.10 Exercises

1. Comment out the calls to acquire and release in kalloc (kernel/kalloc.c:69). This seems
like it should cause problems for kernel code that calls kalloc; what symptoms do you
expect to see? When you run xv6, do you see these symptoms? How about when running
usertests? If you don’t see a problem, why not? See if you can provoke a problem by
inserting dummy loops into the critical section of kalloc.
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2. Suppose that you instead commented out the locking in kfree (after restoring locking
in kalloc). What might now go wrong? Is lack of locks in kfree less harmful than in
kalloc?

3. If two CPUs call kalloc at the same time, one will have to wait for the other, which is bad
for performance. Modify kalloc.c to have more parallelism, so that simultaneous calls to
kalloc from different CPUs can proceed without waiting for each other.

4. Write a parallel program using POSIX threads, which is supported on most operating sys-
tems. For example, implement a parallel hash table and measure if the number of puts/gets
scales with increasing number of cores.

5. Implement a subset of Pthreads in xv6. That is, implement a user-level thread library so that
a user process can have more than 1 thread and arrange that these threads can run in parallel
on different CPUs. Come up with a design that correctly handles a thread making a blocking
system call and changing its shared address space.
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Chapter 7

Scheduling

Any operating system is likely to run with more processes than the computer has CPUs, so a plan
is needed to time-share the CPUs among the processes. Ideally the sharing would be transparent to
user processes. A common approach is to provide each process with the illusion that it has its own
virtual CPU by multiplexing the processes onto the hardware CPUs. This chapter explains how xv6
achieves this multiplexing.

7.1 Multiplexing

Xv6 multiplexes by switching each CPU from one process to another in two situations. First, xv6’s
sleep and wakeup mechanism switches when a process waits for device or pipe I/O to complete,
or waits for a child to exit, or waits in the sleep system call. Second, xv6 periodically forces a
switch to cope with processes that compute for long periods without sleeping. This multiplexing
creates the illusion that each process has its own CPU, much as xv6 uses the memory allocator and
hardware page tables to create the illusion that each process has its own memory.

Implementing multiplexing poses a few challenges. First, how to switch from one process to
another? Although the idea of context switching is simple, the implementation is some of the
most opaque code in xv6. Second, how to force switches in a way that is transparent to user
processes? Xv6 uses the standard technique in which a hardware timer’s interrupts drive context
switches. Third, all of the CPUs switch among the same shared set of processes, and a locking
plan is necessary to avoid races. Fourth, a process’s memory and other resources must be freed
when the process exits, but it cannot do all of this itself because (for example) it can’t free its own
kernel stack while still using it. Fifth, each core of a multi-core machine must remember which
process it is executing so that system calls affect the correct process’s kernel state. Finally, sleep
and wakeup allow a process to give up the CPU and wait to be woken up by another process or
interrupt. Care is needed to avoid races that result in the loss of wakeup notifications. Xv6 tries to
solve these problems as simply as possible, but nevertheless the resulting code is tricky.
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Figure 7.1: Switching from one user process to another. In this example, xv6 runs with one CPU
(and thus one scheduler thread).

7.2 Code: Context switching

Figure 7.1 outlines the steps involved in switching from one user process to another: a user-kernel
transition (system call or interrupt) to the old process’s kernel thread, a context switch to the current
CPU’s scheduler thread, a context switch to a new process’s kernel thread, and a trap return to the
user-level process. The xv6 scheduler has a dedicated thread (saved registers and stack) per CPU
because it is not safe for the scheduler to execute on the old process’s kernel stack: some other
core might wake the process up and run it, and it would be a disaster to use the same stack on two
different cores. In this section we’ll examine the mechanics of switching between a kernel thread
and a scheduler thread.

Switching from one thread to another involves saving the old thread’s CPU registers, and restor-
ing the previously-saved registers of the new thread; the fact that the stack pointer and program
counter are saved and restored means that the CPU will switch stacks and switch what code it is
executing.

The function swtch performs the saves and restores for a kernel thread switch. swtch doesn’t
directly know about threads; it just saves and restores sets of 32 RISC-V registers, called contexts.
When it is time for a process to give up the CPU, the process’s kernel thread calls swtch to save its
own context and return to the scheduler context. Each context is contained in a struct context
(kernel/proc.h:2), itself contained in a process’s struct proc or a CPU’s struct cpu. swtch
takes two arguments: struct context *old and struct context *new. It saves the current
registers in old, loads registers from new, and returns.

Let’s follow a process through swtch into the scheduler. We saw in Chapter 4 that one possibil-
ity at the end of an interrupt is that usertrap calls yield. yield in turn calls sched, which calls
swtch to save the current context in p->context and switch to the scheduler context previously
saved in cpu->context (kernel/proc.c:497).

swtch (kernel/swtch.S:3) saves only callee-saved registers; the C compiler generates code in the
caller to save caller-saved registers on the stack. swtch knows the offset of each register’s field
in struct context. It does not save the program counter. Instead, swtch saves the ra register,
which holds the return address from which swtch was called. Now swtch restores registers from
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the new context, which holds register values saved by a previous swtch. When swtch returns, it
returns to the instructions pointed to by the restored ra register, that is, the instruction from which
the new thread previously called swtch. In addition, it returns on the new thread’s stack, since
that’s where the restored sp points.

In our example, sched called swtch to switch to cpu->context, the per-CPU scheduler
context. That context was saved at the point in the past when scheduler called swtch (ker-
nel/proc.c:463) to switch to the process that’s now giving up the CPU. When the swtch we have
been tracing returns, it returns not to sched but to scheduler, with the stack pointer in the current
CPU’s scheduler stack.

7.3 Code: Scheduling
The last section looked at the low-level details of swtch; now let’s take swtch as a given and
examine switching from one process’s kernel thread through the scheduler to another process. The
scheduler exists in the form of a special thread per CPU, each running the scheduler func-
tion. This function is in charge of choosing which process to run next. A process that wants
to give up the CPU must acquire its own process lock p->lock, release any other locks it is
holding, update its own state (p->state), and then call sched. You can see this sequence in
yield (kernel/proc.c:503), sleep and exit. sched double-checks some of those requirements
(kernel/proc.c:487-492) and then checks an implication: since a lock is held, interrupts should be
disabled. Finally, sched calls swtch to save the current context in p->context and switch
to the scheduler context in cpu->context. swtch returns on the scheduler’s stack as though
scheduler’s swtch had returned (kernel/proc.c:463). The scheduler continues its for loop, finds
a process to run, switches to it, and the cycle repeats.

We just saw that xv6 holds p->lock across calls to swtch: the caller of swtch must already
hold the lock, and control of the lock passes to the switched-to code. This convention is unusual
with locks; usually the thread that acquires a lock is also responsible for releasing the lock, which
makes it easier to reason about correctness. For context switching it is necessary to break this
convention because p->lock protects invariants on the process’s state and context fields that
are not true while executing in swtch. One example of a problem that could arise if p->lock
were not held during swtch: a different CPU might decide to run the process after yield had set
its state to RUNNABLE, but before swtch caused it to stop using its own kernel stack. The result
would be two CPUs running on the same stack, which would cause chaos.

The only place a kernel thread gives up its CPU is in sched, and it always switches to
the same location in scheduler, which (almost) always switches to some kernel thread that
previously called sched. Thus, if one were to print out the line numbers where xv6 switches
threads, one would observe the following simple pattern: (kernel/proc.c:463), (kernel/proc.c:497),
(kernel/proc.c:463), (kernel/proc.c:497), and so on. Procedures that intentionally transfer control to
each other via thread switch are sometimes referred to as coroutines; in this example, sched and
scheduler are co-routines of each other.

There is one case when the scheduler’s call to swtch does not end up in sched. allocproc
sets the context ra register of a new process to forkret (kernel/proc.c:515), so that its first swtch
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“returns” to the start of that function. forkret exists to release the p->lock; otherwise, since
the new process needs to return to user space as if returning from fork, it could instead start at
usertrapret.

scheduler (kernel/proc.c:445) runs a loop: find a process to run, run it until it yields, repeat.
The scheduler loops over the process table looking for a runnable process, one that has p->state
== RUNNABLE. Once it finds a process, it sets the per-CPU current process variable c->proc,
marks the process as RUNNING, and then calls swtch to start running it (kernel/proc.c:458-463).

One way to think about the structure of the scheduling code is that it enforces a set of invariants
about each process, and holds p->lock whenever those invariants are not true. One invariant is
that if a process is RUNNING, a timer interrupt’s yield must be able to safely switch away from
the process; this means that the CPU registers must hold the process’s register values (i.e. swtch
hasn’t moved them to a context), and c->proc must refer to the process. Another invariant is
that if a process is RUNNABLE, it must be safe for an idle CPU’s scheduler to run it; this means
that p->context must hold the process’s registers (i.e., they are not actually in the real registers),
that no CPU is executing on the process’s kernel stack, and that no CPU’s c->proc refers to the
process. Observe that these properties are often not true while p->lock is held.

Maintaining the above invariants is the reason why xv6 often acquires p->lock in one thread
and releases it in another, for example acquiring in yield and releasing in scheduler. Once
yield has started to modify a running process’s state to make it RUNNABLE, the lock must remain
held until the invariants are restored: the earliest correct release point is after scheduler (running
on its own stack) clears c->proc. Similarly, once scheduler starts to convert a RUNNABLE pro-
cess to RUNNING, the lock cannot be released until the kernel thread is completely running (after
the swtch, for example in yield).

7.4 Code: mycpu and myproc
Xv6 often needs a pointer to the current process’s proc structure. On a uniprocessor one could
have a global variable pointing to the current proc. This doesn’t work on a multi-core machine,
since each core executes a different process. The way to solve this problem is to exploit the fact
that each core has its own set of registers; we can use one of those registers to help find per-core
information.

Xv6 maintains a struct cpu for each CPU (kernel/proc.h:22), which records the process cur-
rently running on that CPU (if any), saved registers for the CPU’s scheduler thread, and the count
of nested spinlocks needed to manage interrupt disabling. The function mycpu (kernel/proc.c:74)
returns a pointer to the current CPU’s struct cpu. RISC-V numbers its CPUs, giving each a
hartid. Xv6 ensures that each CPU’s hartid is stored in that CPU’s tp register while in the kernel.
This allows mycpu to use tp to index an array of cpu structures to find the right one.

Ensuring that a CPU’s tp always holds the CPU’s hartid is a little involved. start sets
the tp register early in the CPU’s boot sequence, while still in machine mode (kernel/start.c:51).
usertrapret saves tp in the trampoline page, because the user process might modify tp. Finally,
uservec restores that saved tp when entering the kernel from user space (kernel/trampoline.S:77).
The compiler guarantees never to use the tp register. It would be more convenient if xv6 could
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ask the RISC-V hardware for the current hartid whenever needed, but RISC-V allows that only in
machine mode, not in supervisor mode.

The return values of cpuid and mycpu are fragile: if the timer were to interrupt and cause the
thread to yield and then move to a different CPU, a previously returned value would no longer be
correct. To avoid this problem, xv6 requires that callers disable interrupts, and only enable them
after they finish using the returned struct cpu.

The function myproc (kernel/proc.c:83) returns the struct proc pointer for the process that
is running on the current CPU. myproc disables interrupts, invokes mycpu, fetches the current
process pointer (c->proc) out of the struct cpu, and then enables interrupts. The return value
of myproc is safe to use even if interrupts are enabled: if a timer interrupt moves the calling process
to a different CPU, its struct proc pointer will stay the same.

7.5 Sleep and wakeup

Scheduling and locks help conceal the actions of one thread from another, but we also need ab-
stractions that help threads intentionally interact. For example, the reader of a pipe in xv6 may
need to wait for a writing process to produce data; a parent’s call to wait may need to wait for a
child to exit; and a process reading the disk needs to wait for the disk hardware to finish the read.
The xv6 kernel uses a mechanism called sleep and wakeup in these situations (and many others).
Sleep allows a kernel thread to wait for a specific event; another thread can call wakeup to indi-
cate that threads waiting for an event should resume. Sleep and wakeup are often called sequence
coordination or conditional synchronization mechanisms.

Sleep and wakeup provide a relatively low-level synchronization interface. To motivate the
way they work in xv6, we’ll use them to build a higher-level synchronization mechanism called
a semaphore [5] that coordinates producers and consumers (xv6 does not use semaphores). A
semaphore maintains a count and provides two operations. The “V” operation (for the producer)
increments the count. The “P” operation (for the consumer) waits until the count is non-zero,
and then decrements it and returns. If there were only one producer thread and one consumer
thread, and they executed on different CPUs, and the compiler didn’t optimize too aggressively,
this implementation would be correct:

100 struct semaphore {
101 struct spinlock lock;
102 int count;
103 };
104
105 void
106 V(struct semaphore *s)
107 {
108 acquire(&s->lock);
109 s->count += 1;
110 release(&s->lock);
111 }
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112
113 void
114 P(struct semaphore *s)
115 {
116 while(s->count == 0)
117 ;
118 acquire(&s->lock);
119 s->count -= 1;
120 release(&s->lock);
121 }

The implementation above is expensive. If the producer acts rarely, the consumer will spend
most of its time spinning in the while loop hoping for a non-zero count. The consumer’s CPU
could probably find more productive work than busy waiting by repeatedly polling s->count.
Avoiding busy waiting requires a way for the consumer to yield the CPU and resume only after V
increments the count.

Here’s a step in that direction, though as we will see it is not enough. Let’s imagine a pair
of calls, sleep and wakeup, that work as follows. sleep(chan) sleeps on the arbitrary value
chan, called the wait channel. sleep puts the calling process to sleep, releasing the CPU for other
work. wakeup(chan) wakes all processes sleeping on chan (if any), causing their sleep calls to
return. If no processes are waiting on chan, wakeup does nothing. We can change the semaphore
implementation to use sleep and wakeup (changes highlighted in yellow):

200 void
201 V(struct semaphore *s)
202 {
203 acquire(&s->lock);
204 s->count += 1;
205 wakeup(s);
206 release(&s->lock);
207 }
208
209 void
210 P(struct semaphore *s)
211 {
212 while(s->count == 0)
213 sleep(s);
214 acquire(&s->lock);
215 s->count -= 1;
216 release(&s->lock);
217 }

P now gives up the CPU instead of spinning, which is nice. However, it turns out not to be
straightforward to design sleep and wakeup with this interface without suffering from what is
known as the lost wake-up problem. Suppose that P finds that s->count == 0 on line 212. While
P is between lines 212 and 213, V runs on another CPU: it changes s->count to be nonzero and
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calls wakeup, which finds no processes sleeping and thus does nothing. Now P continues executing
at line 213: it calls sleep and goes to sleep. This causes a problem: P is asleep waiting for a V call
that has already happened. Unless we get lucky and the producer calls V again, the consumer will
wait forever even though the count is non-zero.

The root of this problem is that the invariant that P only sleeps when s->count == 0 is violated
by V running at just the wrong moment. An incorrect way to protect the invariant would be to move
the lock acquisition (highlighted in yellow below) in P so that its check of the count and its call to
sleep are atomic:

300 void
301 V(struct semaphore *s)
302 {
303 acquire(&s->lock);
304 s->count += 1;
305 wakeup(s);
306 release(&s->lock);
307 }
308
309 void
310 P(struct semaphore *s)
311 {
312 acquire(&s->lock);
313 while(s->count == 0)
314 sleep(s);
315 s->count -= 1;
316 release(&s->lock);
317 }

One might hope that this version of P would avoid the lost wakeup because the lock prevents V
from executing between lines 313 and 314. It does that, but it also deadlocks: P holds the lock
while it sleeps, so V will block forever waiting for the lock.

We’ll fix the preceding scheme by changing sleep’s interface: the caller must pass the con-
dition lock to sleep so it can release the lock after the calling process is marked as asleep and
waiting on the sleep channel. The lock will force a concurrent V to wait until P has finished putting
itself to sleep, so that the wakeup will find the sleeping consumer and wake it up. Once the con-
sumer is awake again sleep reacquires the lock before returning. Our new correct sleep/wakeup
scheme is usable as follows (change highlighted in yellow):

400 void
401 V(struct semaphore *s)
402 {
403 acquire(&s->lock);
404 s->count += 1;
405 wakeup(s);
406 release(&s->lock);
407 }
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408
409 void
410 P(struct semaphore *s)
411 {
412 acquire(&s->lock);
413 while(s->count == 0)
414 sleep(s, &s->lock);
415 s->count -= 1;
416 release(&s->lock);
417 }

The fact that P holds s->lock prevents V from trying to wake it up between P’s check of
s->count and its call to sleep. Note, however, that we need sleep to atomically release s->lock
and put the consuming process to sleep, in order to avoid lost wakeups.

7.6 Code: Sleep and wakeup

Xv6’s sleep (kernel/proc.c:536) and wakeup (kernel/proc.c:567) provide the interface shown in the
last example above, and their implementation (plus rules for how to use them) ensures that there are
no lost wakeups. The basic idea is to have sleep mark the current process as SLEEPING and then
call sched to release the CPU; wakeup looks for a process sleeping on the given wait channel and
marks it as RUNNABLE. Callers of sleep and wakeup can use any mutually convenient number as
the channel. Xv6 often uses the address of a kernel data structure involved in the waiting.

sleep acquires p->lock (kernel/proc.c:547). Now the process going to sleep holds both p->lock
and lk. Holding lk was necessary in the caller (in the example, P): it ensured that no other pro-
cess (in the example, one running V) could start a call to wakeup(chan). Now that sleep holds
p->lock, it is safe to release lk: some other process may start a call to wakeup(chan), but
wakeup will wait to acquire p->lock, and thus will wait until sleep has finished putting the
process to sleep, keeping the wakeup from missing the sleep.

Now that sleep holds p->lock and no others, it can put the process to sleep by recording the
sleep channel, changing the process state to SLEEPING, and calling sched (kernel/proc.c:551-554).
In a moment it will be clear why it’s critical that p->lock is not released (by scheduler) until
after the process is marked SLEEPING.

At some point, a process will acquire the condition lock, set the condition that the sleeper
is waiting for, and call wakeup(chan). It’s important that wakeup is called while holding the
condition lock1. wakeup loops over the process table (kernel/proc.c:567). It acquires the p->lock of
each process it inspects, both because it may manipulate that process’s state and because p->lock
ensures that sleep and wakeup do not miss each other. When wakeup finds a process in state
SLEEPING with a matching chan, it changes that process’s state to RUNNABLE. The next time the
scheduler runs, it will see that the process is ready to be run.

1Strictly speaking it is sufficient if wakeup merely follows the acquire (that is, one could call wakeup after
the release).
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Why do the locking rules for sleep and wakeup ensure a sleeping process won’t miss a
wakeup? The sleeping process holds either the condition lock or its own p->lock or both from a
point before it checks the condition to a point after it is marked SLEEPING. The process calling
wakeup holds both of those locks in wakeup’s loop. Thus the waker either makes the condition
true before the consuming thread checks the condition; or the waker’s wakeup examines the sleep-
ing thread strictly after it has been marked SLEEPING. Then wakeup will see the sleeping process
and wake it up (unless something else wakes it up first).

It is sometimes the case that multiple processes are sleeping on the same channel; for example,
more than one process reading from a pipe. A single call to wakeup will wake them all up. One
of them will run first and acquire the lock that sleep was called with, and (in the case of pipes)
read whatever data is waiting in the pipe. The other processes will find that, despite being woken
up, there is no data to be read. From their point of view the wakeup was “spurious,” and they must
sleep again. For this reason sleep is always called inside a loop that checks the condition.

No harm is done if two uses of sleep/wakeup accidentally choose the same channel: they will
see spurious wakeups, but looping as described above will tolerate this problem. Much of the
charm of sleep/wakeup is that it is both lightweight (no need to create special data structures to
act as sleep channels) and provides a layer of indirection (callers need not know which specific
process they are interacting with).

7.7 Code: Pipes
A more complex example that uses sleep and wakeup to synchronize producers and consumers
is xv6’s implementation of pipes. We saw the interface for pipes in Chapter 1: bytes written to one
end of a pipe are copied to an in-kernel buffer and then can be read from the other end of the pipe.
Future chapters will examine the file descriptor support surrounding pipes, but let’s look now at
the implementations of pipewrite and piperead.

Each pipe is represented by a struct pipe, which contains a lock and a data buffer.
The fields nread and nwrite count the total number of bytes read from and written to the
buffer. The buffer wraps around: the next byte written after buf[PIPESIZE-1] is buf[0]. The
counts do not wrap. This convention lets the implementation distinguish a full buffer (nwrite ==
nread+PIPESIZE) from an empty buffer (nwrite == nread), but it means that indexing into
the buffer must use buf[nread % PIPESIZE] instead of just buf[nread] (and similarly for
nwrite).

Let’s suppose that calls to piperead and pipewrite happen simultaneously on two different
CPUs. pipewrite (kernel/pipe.c:77) begins by acquiring the pipe’s lock, which protects the counts,
the data, and their associated invariants. piperead (kernel/pipe.c:106) then tries to acquire the lock
too, but cannot. It spins in acquire (kernel/spinlock.c:22) waiting for the lock. While piperead

waits, pipewrite loops over the bytes being written (addr[0..n-1]), adding each to the pipe in
turn (kernel/pipe.c:95). During this loop, it could happen that the buffer fills (kernel/pipe.c:88). In this
case, pipewrite calls wakeup to alert any sleeping readers to the fact that there is data waiting
in the buffer and then sleeps on &pi->nwrite to wait for a reader to take some bytes out of the
buffer. sleep releases pi->lock as part of putting pipewrite’s process to sleep.
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Now that pi->lock is available, piperead manages to acquire it and enters its critical sec-
tion: it finds that pi->nread != pi->nwrite (kernel/pipe.c:113) (pipewrite went to sleep be-
cause pi->nwrite == pi->nread+PIPESIZE (kernel/pipe.c:88)), so it falls through to the for

loop, copies data out of the pipe (kernel/pipe.c:120), and increments nread by the number of
bytes copied. That many bytes are now available for writing, so piperead calls wakeup (ker-
nel/pipe.c:127) to wake any sleeping writers before it returns. wakeup finds a process sleeping on
&pi->nwrite, the process that was running pipewrite but stopped when the buffer filled. It
marks that process as RUNNABLE.

The pipe code uses separate sleep channels for reader and writer (pi->nread and pi->nwrite);
this might make the system more efficient in the unlikely event that there are lots of readers and
writers waiting for the same pipe. The pipe code sleeps inside a loop checking the sleep condition;
if there are multiple readers or writers, all but the first process to wake up will see the condition is
still false and sleep again.

7.8 Code: Wait, exit, and kill
sleep and wakeup can be used for many kinds of waiting. An interesting example, introduced
in Chapter 1, is the interaction between a child’s exit and its parent’s wait. At the time of the
child’s death, the parent may already be sleeping in wait, or may be doing something else; in the
latter case, a subsequent call to wait must observe the child’s death, perhaps long after it calls
exit. The way that xv6 records the child’s demise until wait observes it is for exit to put the
caller into the ZOMBIE state, where it stays until the parent’s wait notices it, changes the child’s
state to UNUSED, copies the child’s exit status, and returns the child’s process ID to the parent. If
the parent exits before the child, the parent gives the child to the init process, which perpetually
calls wait; thus every child has a parent to clean up after it. A challenge is to avoid races and
deadlock between simultaneous parent and child wait and exit, as well as simultaneous exit
and exit.

wait starts by acquiring wait_lock (kernel/proc.c:391). The reason is that wait_lock acts as
the condition lock that helps ensure that the parent doesn’t miss a wakeup from an exiting child.
Then wait scans the process table. If it finds a child in ZOMBIE state, it frees that child’s resources
and its proc structure, copies the child’s exit status to the address supplied to wait (if it is not
0), and returns the child’s process ID. If wait finds children but none have exited, it calls sleep
to wait for any of them to exit (kernel/proc.c:433), then scans again. wait often holds two locks,
wait_lock and some process’s pp->lock; the deadlock-avoiding order is first wait_lock and
then pp->lock.

exit (kernel/proc.c:347) records the exit status, frees some resources, calls reparent to give
its children to the init process, wakes up the parent in case it is in wait, marks the caller as
a zombie, and permanently yields the CPU. exit holds both wait_lock and p->lock during
this sequence. It holds wait_lock because it’s the condition lock for the wakeup(p->parent),
preventing a parent in wait from losing the wakeup. exit must hold p->lock for this sequence
also, to prevent a parent in wait from seeing that the child is in state ZOMBIE before the child has
finally called swtch. exit acquires these locks in the same order as wait to avoid deadlock.

80

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L113
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L88
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L120
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L127
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/pipe.c#L127
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L391
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L433
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/proc.c#L347


It may look incorrect for exit to wake up the parent before setting its state to ZOMBIE, but that
is safe: although wakeup may cause the parent to run, the loop in wait cannot examine the child
until the child’s p->lock is released by scheduler, so wait can’t look at the exiting process
until well after exit has set its state to ZOMBIE (kernel/proc.c:379).

While exit allows a process to terminate itself, kill (kernel/proc.c:586) lets one process re-
quest that another terminate. It would be too complex for kill to directly destroy the victim
process, since the victim might be executing on another CPU, perhaps in the middle of a sensitive
sequence of updates to kernel data structures. Thus kill does very little: it just sets the victim’s
p->killed and, if it is sleeping, wakes it up. Eventually the victim will enter or leave the kernel,
at which point code in usertrap will call exit if p->killed is set (it checks by calling killed
(kernel/proc.c:615)). If the victim is running in user space, it will soon enter the kernel by making a
system call or because the timer (or some other device) interrupts.

If the victim process is in sleep, kill’s call to wakeup will cause the victim to return from
sleep. This is potentially dangerous because the condition being waiting for may not be true.
However, xv6 calls to sleep are always wrapped in a while loop that re-tests the condition after
sleep returns. Some calls to sleep also test p->killed in the loop, and abandon the current
activity if it is set. This is only done when such abandonment would be correct. For example, the
pipe read and write code returns if the killed flag is set; eventually the code will return back to trap,
which will again check p->killed and exit.

Some xv6 sleep loops do not check p->killed because the code is in the middle of a multi-
step system call that should be atomic. The virtio driver (kernel/virtio_disk.c:285) is an example: it
does not check p->killed because a disk operation may be one of a set of writes that are all
needed in order for the file system to be left in a correct state. A process that is killed while waiting
for disk I/O won’t exit until it completes the current system call and usertrap sees the killed flag.

7.9 Process Locking
The lock associated with each process (p->lock) is the most complex lock in xv6. A simple
way to think about p->lock is that it must be held while reading or writing any of the following
struct proc fields: p->state, p->chan, p->killed, p->xstate, and p->pid. These fields
can be used by other processes, or by scheduler threads on other cores, so it’s natural that they
must be protected by a lock.

However, most uses of p->lock are protecting higher-level aspects of xv6’s process data struc-
tures and algorithms. Here’s the full set of things that p->lock does:

• Along with p->state, it prevents races in allocating proc[] slots for new processes.

• It conceals a process from view while it is being created or destroyed.

• It prevents a parent’s wait from collecting a process that has set its state to ZOMBIE but has
not yet yielded the CPU.

• It prevents another core’s scheduler from deciding to run a yielding process after it sets its
state to RUNNABLE but before it finishes swtch.
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• It ensures that only one core’s scheduler decides to run a RUNNABLE processes.

• It prevents a timer interrupt from causing a process to yield while it is in swtch.

• Along with the condition lock, it helps prevent wakeup from overlooking a process that is
calling sleep but has not finished yielding the CPU.

• It prevents the victim process of kill from exiting and perhaps being re-allocated between
kill’s check of p->pid and setting p->killed.

• It makes kill’s check and write of p->state atomic.

The p->parent field is protected by the global lock wait_lock rather than by p->lock.
Only a process’s parent modifies p->parent, though the field is read both by the process it-
self and by other processes searching for their children. The purpose of wait_lock is to act as
the condition lock when wait sleeps waiting for any child to exit. An exiting child holds either
wait_lock or p->lock until after it has set its state to ZOMBIE, woken up its parent, and yielded
the CPU. wait_lock also serializes concurrent exits by a parent and child, so that the init

process (which inherits the child) is guaranteed to be woken up from its wait. wait_lock is a
global lock rather than a per-process lock in each parent, because, until a process acquires it, it
cannot know who its parent is.

7.10 Real world
The xv6 scheduler implements a simple scheduling policy, which runs each process in turn. This
policy is called round robin. Real operating systems implement more sophisticated policies that,
for example, allow processes to have priorities. The idea is that a runnable high-priority process
will be preferred by the scheduler over a runnable low-priority process. These policies can become
complex quickly because there are often competing goals: for example, the operating system might
also want to guarantee fairness and high throughput. In addition, complex policies may lead to
unintended interactions such as priority inversion and convoys. Priority inversion can happen when
a low-priority and high-priority process both use a particular lock, which when acquired by the
low-priority process can prevent the high-priority process from making progress. A long convoy
of waiting processes can form when many high-priority processes are waiting for a low-priority
process that acquires a shared lock; once a convoy has formed it can persist for long time. To avoid
these kinds of problems additional mechanisms are necessary in sophisticated schedulers.

sleep and wakeup are a simple and effective synchronization method, but there are many
others. The first challenge in all of them is to avoid the “lost wakeups” problem we saw at the
beginning of the chapter. The original Unix kernel’s sleep simply disabled interrupts, which suf-
ficed because Unix ran on a single-CPU system. Because xv6 runs on multiprocessors, it adds
an explicit lock to sleep. FreeBSD’s msleep takes the same approach. Plan 9’s sleep uses a
callback function that runs with the scheduling lock held just before going to sleep; the function
serves as a last-minute check of the sleep condition, to avoid lost wakeups. The Linux kernel’s
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sleep uses an explicit process queue, called a wait queue, instead of a wait channel; the queue has
its own internal lock.

Scanning the entire set of processes in wakeup is inefficient. A better solution is to replace
the chan in both sleep and wakeup with a data structure that holds a list of processes sleeping
on that structure, such as Linux’s wait queue. Plan 9’s sleep and wakeup call that structure a
rendezvous point. Many thread libraries refer to the same structure as a condition variable; in that
context, the operations sleep and wakeup are called wait and signal. All of these mechanisms
share the same flavor: the sleep condition is protected by some kind of lock dropped atomically
during sleep.

The implementation of wakeup wakes up all processes that are waiting on a particular chan-
nel, and it might be the case that many processes are waiting for that particular channel. The
operating system will schedule all these processes and they will race to check the sleep condition.
Processes that behave in this way are sometimes called a thundering herd, and it is best avoided.
Most condition variables have two primitives for wakeup: signal, which wakes up one process,
and broadcast, which wakes up all waiting processes.

Semaphores are often used for synchronization. The count typically corresponds to something
like the number of bytes available in a pipe buffer or the number of zombie children that a process
has. Using an explicit count as part of the abstraction avoids the “lost wakeup” problem: there is
an explicit count of the number of wakeups that have occurred. The count also avoids the spurious
wakeup and thundering herd problems.

Terminating processes and cleaning them up introduces much complexity in xv6. In most op-
erating systems it is even more complex, because, for example, the victim process may be deep
inside the kernel sleeping, and unwinding its stack requires care, since each function on the call
stack may need to do some clean-up. Some languages help out by providing an exception mecha-
nism, but not C. Furthermore, there are other events that can cause a sleeping process to be woken
up, even though the event it is waiting for has not happened yet. For example, when a Unix process
is sleeping, another process may send a signal to it. In this case, the process will return from the
interrupted system call with the value -1 and with the error code set to EINTR. The application
can check for these values and decide what to do. Xv6 doesn’t support signals and this complexity
doesn’t arise.

Xv6’s support for kill is not entirely satisfactory: there are sleep loops which probably should
check for p->killed. A related problem is that, even for sleep loops that check p->killed,
there is a race between sleep and kill; the latter may set p->killed and try to wake up the
victim just after the victim’s loop checks p->killed but before it calls sleep. If this problem
occurs, the victim won’t notice the p->killed until the condition it is waiting for occurs. This
may be quite a bit later or even never (e.g., if the victim is waiting for input from the console, but
the user doesn’t type any input).

A real operating system would find free proc structures with an explicit free list in constant
time instead of the linear-time search in allocproc; xv6 uses the linear scan for simplicity.
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7.11 Exercises
1. Sleep has to check lk != &p->lock to avoid a deadlock Suppose the special case were

eliminated by replacing

if(lk != &p->lock){
acquire(&p->lock);
release(lk);

}

with

release(lk);
acquire(&p->lock);

Doing this would break sleep. How?

2. Implement semaphores in xv6 without using sleep and wakeup (but it is OK to use spin
locks). Replace the uses of sleep and wakeup in xv6 with semaphores. Judge the result.

3. Fix the race mentioned above between kill and sleep, so that a kill that occurs after
the victim’s sleep loop checks p->killed but before it calls sleep results in the victim
abandoning the current system call.

4. Design a plan so that every sleep loop checks p->killed so that, for example, a process
that is in the virtio driver can return quickly from the while loop if it is killed by another
process.

5. Modify xv6 to use only one context switch when switching from one process’s kernel thread
to another, rather than switching through the scheduler thread. The yielding thread will need
to select the next thread itself and call swtch. The challenges will be to prevent multiple
cores from executing the same thread accidentally; to get the locking right; and to avoid
deadlocks.

6. Modify xv6’s scheduler to use the RISC-V WFI (wait for interrupt) instruction when no
processes are runnable. Try to ensure that, any time there are runnable processes waiting to
run, no cores are pausing in WFI.
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Chapter 8

File system

The purpose of a file system is to organize and store data. File systems typically support sharing
of data among users and applications, as well as persistence so that data is still available after a
reboot.

The xv6 file system provides Unix-like files, directories, and pathnames (see Chapter 1), and
stores its data on a virtio disk for persistence. The file system addresses several challenges:

• The file system needs on-disk data structures to represent the tree of named directories and
files, to record the identities of the blocks that hold each file’s content, and to record which
areas of the disk are free.

• The file system must support crash recovery. That is, if a crash (e.g., power failure) occurs,
the file system must still work correctly after a restart. The risk is that a crash might interrupt
a sequence of updates and leave inconsistent on-disk data structures (e.g., a block that is both
used in a file and marked free).

• Different processes may operate on the file system at the same time, so the file-system code
must coordinate to maintain invariants.

• Accessing a disk is orders of magnitude slower than accessing memory, so the file system
must maintain an in-memory cache of popular blocks.

The rest of this chapter explains how xv6 addresses these challenges.

8.1 Overview
The xv6 file system implementation is organized in seven layers, shown in Figure 8.1. The disk
layer reads and writes blocks on an virtio hard drive. The buffer cache layer caches disk blocks
and synchronizes access to them, making sure that only one kernel process at a time can modify
the data stored in any particular block. The logging layer allows higher layers to wrap updates
to several blocks in a transaction, and ensures that the blocks are updated atomically in the face
of crashes (i.e., all of them are updated or none). The inode layer provides individual files, each
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Figure 8.1: Layers of the xv6 file system.

represented as an inode with a unique i-number and some blocks holding the file’s data. The di-
rectory layer implements each directory as a special kind of inode whose content is a sequence of
directory entries, each of which contains a file’s name and i-number. The pathname layer provides
hierarchical path names like /usr/rtm/xv6/fs.c, and resolves them with recursive lookup. The
file descriptor layer abstracts many Unix resources (e.g., pipes, devices, files, etc.) using the file
system interface, simplifying the lives of application programmers.

Disk hardware traditionally presents the data on the disk as a numbered sequence of 512-byte
blocks (also called sectors): sector 0 is the first 512 bytes, sector 1 is the next, and so on. The block
size that an operating system uses for its file system maybe different than the sector size that a
disk uses, but typically the block size is a multiple of the sector size. Xv6 holds copies of blocks
that it has read into memory in objects of type struct buf (kernel/buf.h:1). The data stored in this
structure is sometimes out of sync with the disk: it might have not yet been read in from disk (the
disk is working on it but hasn’t returned the sector’s content yet), or it might have been updated by
software but not yet written to the disk.

The file system must have a plan for where it stores inodes and content blocks on the disk. To
do so, xv6 divides the disk into several sections, as Figure 8.2 shows. The file system does not use
block 0 (it holds the boot sector). Block 1 is called the superblock; it contains metadata about the
file system (the file system size in blocks, the number of data blocks, the number of inodes, and
the number of blocks in the log). Blocks starting at 2 hold the log. After the log are the inodes,
with multiple inodes per block. After those come bitmap blocks tracking which data blocks are
in use. The remaining blocks are data blocks; each is either marked free in the bitmap block, or
holds content for a file or directory. The superblock is filled in by a separate program, called mkfs,
which builds an initial file system.

The rest of this chapter discusses each layer, starting with the buffer cache. Look out for situa-
tions where well-chosen abstractions at lower layers ease the design of higher ones.
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Figure 8.2: Structure of the xv6 file system.

8.2 Buffer cache layer
The buffer cache has two jobs: (1) synchronize access to disk blocks to ensure that only one copy
of a block is in memory and that only one kernel thread at a time uses that copy; (2) cache popular
blocks so that they don’t need to be re-read from the slow disk. The code is in bio.c.

The main interface exported by the buffer cache consists of bread and bwrite; the former
obtains a buf containing a copy of a block which can be read or modified in memory, and the latter
writes a modified buffer to the appropriate block on the disk. A kernel thread must release a buffer
by calling brelse when it is done with it. The buffer cache uses a per-buffer sleep-lock to ensure
that only one thread at a time uses each buffer (and thus each disk block); bread returns a locked
buffer, and brelse releases the lock.

Let’s return to the buffer cache. The buffer cache has a fixed number of buffers to hold disk
blocks, which means that if the file system asks for a block that is not already in the cache, the
buffer cache must recycle a buffer currently holding some other block. The buffer cache recycles
the least recently used buffer for the new block. The assumption is that the least recently used
buffer is the one least likely to be used again soon.

8.3 Code: Buffer cache
The buffer cache is a doubly-linked list of buffers. The function binit, called by main (kernel/-
main.c:27), initializes the list with the NBUF buffers in the static array buf (kernel/bio.c:43-52). All
other access to the buffer cache refer to the linked list via bcache.head, not the buf array.

A buffer has two state fields associated with it. The field valid indicates that the buffer con-
tains a copy of the block. The field disk indicates that the buffer content has been handed to the
disk, which may change the buffer (e.g., write data from the disk into data).

bread (kernel/bio.c:93) calls bget to get a buffer for the given sector (kernel/bio.c:97). If the
buffer needs to be read from disk, bread calls virtio_disk_rw to do that before returning the
buffer.

bget (kernel/bio.c:59) scans the buffer list for a buffer with the given device and sector numbers
(kernel/bio.c:65-73). If there is such a buffer, bget acquires the sleep-lock for the buffer. bget then
returns the locked buffer.

If there is no cached buffer for the given sector, bget must make one, possibly reusing a buffer
that held a different sector. It scans the buffer list a second time, looking for a buffer that is not in use
(b->refcnt = 0); any such buffer can be used. bget edits the buffer metadata to record the new
device and sector number and acquires its sleep-lock. Note that the assignment b->valid = 0

ensures that bread will read the block data from disk rather than incorrectly using the buffer’s
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previous contents.
It is important that there is at most one cached buffer per disk sector, to ensure that readers

see writes, and because the file system uses locks on buffers for synchronization. bget ensures
this invariant by holding the bache.lock continuously from the first loop’s check of whether the
block is cached through the second loop’s declaration that the block is now cached (by setting
dev, blockno, and refcnt). This causes the check for a block’s presence and (if not present) the
designation of a buffer to hold the block to be atomic.

It is safe for bget to acquire the buffer’s sleep-lock outside of the bcache.lock critical
section, since the non-zero b->refcnt prevents the buffer from being re-used for a different
disk block. The sleep-lock protects reads and writes of the block’s buffered content, while the
bcache.lock protects information about which blocks are cached.

If all the buffers are busy, then too many processes are simultaneously executing file system
calls; bget panics. A more graceful response might be to sleep until a buffer became free, though
there would then be a possibility of deadlock.

Once bread has read the disk (if needed) and returned the buffer to its caller, the caller has
exclusive use of the buffer and can read or write the data bytes. If the caller does modify the
buffer, it must call bwrite to write the changed data to disk before releasing the buffer. bwrite
(kernel/bio.c:107) calls virtio_disk_rw to talk to the disk hardware.

When the caller is done with a buffer, it must call brelse to release it. (The name brelse,
a shortening of b-release, is cryptic but worth learning: it originated in Unix and is used in BSD,
Linux, and Solaris too.) brelse (kernel/bio.c:117) releases the sleep-lock and moves the buffer to
the front of the linked list (kernel/bio.c:128-133). Moving the buffer causes the list to be ordered
by how recently the buffers were used (meaning released): the first buffer in the list is the most
recently used, and the last is the least recently used. The two loops in bget take advantage of this:
the scan for an existing buffer must process the entire list in the worst case, but checking the most
recently used buffers first (starting at bcache.head and following next pointers) will reduce
scan time when there is good locality of reference. The scan to pick a buffer to reuse picks the least
recently used buffer by scanning backward (following prev pointers).

8.4 Logging layer
One of the most interesting problems in file system design is crash recovery. The problem arises
because many file-system operations involve multiple writes to the disk, and a crash after a subset
of the writes may leave the on-disk file system in an inconsistent state. For example, suppose
a crash occurs during file truncation (setting the length of a file to zero and freeing its content
blocks). Depending on the order of the disk writes, the crash may either leave an inode with a
reference to a content block that is marked free, or it may leave an allocated but unreferenced
content block.

The latter is relatively benign, but an inode that refers to a freed block is likely to cause serious
problems after a reboot. After reboot, the kernel might allocate that block to another file, and now
we have two different files pointing unintentionally to the same block. If xv6 supported multiple
users, this situation could be a security problem, since the old file’s owner would be able to read
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and write blocks in the new file, owned by a different user.
Xv6 solves the problem of crashes during file-system operations with a simple form of logging.

An xv6 system call does not directly write the on-disk file system data structures. Instead, it places
a description of all the disk writes it wishes to make in a log on the disk. Once the system call has
logged all of its writes, it writes a special commit record to the disk indicating that the log contains
a complete operation. At that point the system call copies the writes to the on-disk file system data
structures. After those writes have completed, the system call erases the log on disk.

If the system should crash and reboot, the file-system code recovers from the crash as follows,
before running any processes. If the log is marked as containing a complete operation, then the
recovery code copies the writes to where they belong in the on-disk file system. If the log is not
marked as containing a complete operation, the recovery code ignores the log. The recovery code
finishes by erasing the log.

Why does xv6’s log solve the problem of crashes during file system operations? If the crash
occurs before the operation commits, then the log on disk will not be marked as complete, the re-
covery code will ignore it, and the state of the disk will be as if the operation had not even started. If
the crash occurs after the operation commits, then recovery will replay all of the operation’s writes,
perhaps repeating them if the operation had started to write them to the on-disk data structure. In
either case, the log makes operations atomic with respect to crashes: after recovery, either all of
the operation’s writes appear on the disk, or none of them appear.

8.5 Log design
The log resides at a known fixed location, specified in the superblock. It consists of a header block
followed by a sequence of updated block copies (“logged blocks”). The header block contains an
array of sector numbers, one for each of the logged blocks, and the count of log blocks. The count
in the header block on disk is either zero, indicating that there is no transaction in the log, or non-
zero, indicating that the log contains a complete committed transaction with the indicated number
of logged blocks. Xv6 writes the header block when a transaction commits, but not before, and sets
the count to zero after copying the logged blocks to the file system. Thus a crash midway through
a transaction will result in a count of zero in the log’s header block; a crash after a commit will
result in a non-zero count.

Each system call’s code indicates the start and end of the sequence of writes that must be atomic
with respect to crashes. To allow concurrent execution of file-system operations by different pro-
cesses, the logging system can accumulate the writes of multiple system calls into one transaction.
Thus a single commit may involve the writes of multiple complete system calls. To avoid splitting
a system call across transactions, the logging system only commits when no file-system system
calls are underway.

The idea of committing several transactions together is known as group commit. Group commit
reduces the number of disk operations because it amortizes the fixed cost of a commit over multiple
operations. Group commit also hands the disk system more concurrent writes at the same time,
perhaps allowing the disk to write them all during a single disk rotation. Xv6’s virtio driver doesn’t
support this kind of batching, but xv6’s file system design allows for it.
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Xv6 dedicates a fixed amount of space on the disk to hold the log. The total number of blocks
written by the system calls in a transaction must fit in that space. This has two consequences.
No single system call can be allowed to write more distinct blocks than there is space in the log.
This is not a problem for most system calls, but two of them can potentially write many blocks:
write and unlink. A large file write may write many data blocks and many bitmap blocks as
well as an inode block; unlinking a large file might write many bitmap blocks and an inode. Xv6’s
write system call breaks up large writes into multiple smaller writes that fit in the log, and unlink
doesn’t cause problems because in practice the xv6 file system uses only one bitmap block. The
other consequence of limited log space is that the logging system cannot allow a system call to
start unless it is certain that the system call’s writes will fit in the space remaining in the log.

8.6 Code: logging
A typical use of the log in a system call looks like this:

begin_op();
...
bp = bread(...);
bp->data[...] = ...;
log_write(bp);
...
end_op();

begin_op (kernel/log.c:127) waits until the logging system is not currently committing, and
until there is enough unreserved log space to hold the writes from this call. log.outstanding
counts the number of system calls that have reserved log space; the total reserved space is log.outstanding
times MAXOPBLOCKS. Incrementing log.outstanding both reserves space and prevents a com-
mit from occurring during this system call. The code conservatively assumes that each system call
might write up to MAXOPBLOCKS distinct blocks.

log_write (kernel/log.c:215) acts as a proxy for bwrite. It records the block’s sector number
in memory, reserving it a slot in the log on disk, and pins the buffer in the block cache to prevent
the block cache from evicting it. The block must stay in the cache until committed: until then, the
cached copy is the only record of the modification; it cannot be written to its place on disk until after
commit; and other reads in the same transaction must see the modifications. log_write notices
when a block is written multiple times during a single transaction, and allocates that block the
same slot in the log. This optimization is often called absorption. It is common that, for example,
the disk block containing inodes of several files is written several times within a transaction. By
absorbing several disk writes into one, the file system can save log space and can achieve better
performance because only one copy of the disk block must be written to disk.

end_op (kernel/log.c:147) first decrements the count of outstanding system calls. If the count is
now zero, it commits the current transaction by calling commit(). There are four stages in this
process. write_log() (kernel/log.c:179) copies each block modified in the transaction from the
buffer cache to its slot in the log on disk. write_head() (kernel/log.c:103) writes the header block
to disk: this is the commit point, and a crash after the write will result in recovery replaying the
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transaction’s writes from the log. install_trans (kernel/log.c:69) reads each block from the log
and writes it to the proper place in the file system. Finally end_op writes the log header with a
count of zero; this has to happen before the next transaction starts writing logged blocks, so that
a crash doesn’t result in recovery using one transaction’s header with the subsequent transaction’s
logged blocks.

recover_from_log (kernel/log.c:117) is called from initlog (kernel/log.c:55), which is called
from fsinit(kernel/fs.c:42) during boot before the first user process runs (kernel/proc.c:527). It
reads the log header, and mimics the actions of end_op if the header indicates that the log con-
tains a committed transaction.

An example use of the log occurs in filewrite (kernel/file.c:135). The transaction looks like
this:

begin_op();
ilock(f->ip);
r = writei(f->ip, ...);
iunlock(f->ip);
end_op();

This code is wrapped in a loop that breaks up large writes into individual transactions of just a few
sectors at a time, to avoid overflowing the log. The call to writei writes many blocks as part of
this transaction: the file’s inode, one or more bitmap blocks, and some data blocks.

8.7 Code: Block allocator

File and directory content is stored in disk blocks, which must be allocated from a free pool. Xv6’s
block allocator maintains a free bitmap on disk, with one bit per block. A zero bit indicates that
the corresponding block is free; a one bit indicates that it is in use. The program mkfs sets the bits
corresponding to the boot sector, superblock, log blocks, inode blocks, and bitmap blocks.

The block allocator provides two functions: balloc allocates a new disk block, and bfree

frees a block. balloc The loop in balloc at (kernel/fs.c:72) considers every block, starting at
block 0 up to sb.size, the number of blocks in the file system. It looks for a block whose bitmap
bit is zero, indicating that it is free. If balloc finds such a block, it updates the bitmap and returns
the block. For efficiency, the loop is split into two pieces. The outer loop reads each block of bitmap
bits. The inner loop checks all Bits-Per-Block (BPB) bits in a single bitmap block. The race that
might occur if two processes try to allocate a block at the same time is prevented by the fact that
the buffer cache only lets one process use any one bitmap block at a time.

bfree (kernel/fs.c:92) finds the right bitmap block and clears the right bit. Again the exclusive
use implied by bread and brelse avoids the need for explicit locking.

As with much of the code described in the remainder of this chapter, balloc and bfree must
be called inside a transaction.
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8.8 Inode layer
The term inode can have one of two related meanings. It might refer to the on-disk data structure
containing a file’s size and list of data block numbers. Or “inode” might refer to an in-memory
inode, which contains a copy of the on-disk inode as well as extra information needed within the
kernel.

The on-disk inodes are packed into a contiguous area of disk called the inode blocks. Every
inode is the same size, so it is easy, given a number n, to find the nth inode on the disk. In fact, this
number n, called the inode number or i-number, is how inodes are identified in the implementation.

The on-disk inode is defined by a struct dinode (kernel/fs.h:32). The type field distin-
guishes between files, directories, and special files (devices). A type of zero indicates that an on-
disk inode is free. The nlink field counts the number of directory entries that refer to this inode,
in order to recognize when the on-disk inode and its data blocks should be freed. The size field
records the number of bytes of content in the file. The addrs array records the block numbers of
the disk blocks holding the file’s content.

The kernel keeps the set of active inodes in memory in a table called itable; struct inode

(kernel/file.h:17) is the in-memory copy of a struct dinode on disk. The kernel stores an inode
in memory only if there are C pointers referring to that inode. The ref field counts the number
of C pointers referring to the in-memory inode, and the kernel discards the inode from memory if
the reference count drops to zero. The iget and iput functions acquire and release pointers to an
inode, modifying the reference count. Pointers to an inode can come from file descriptors, current
working directories, and transient kernel code such as exec.

There are four lock or lock-like mechanisms in xv6’s inode code. itable.lock protects the
invariant that an inode is present in the inode table at most once, and the invariant that an in-
memory inode’s ref field counts the number of in-memory pointers to the inode. Each in-memory
inode has a lock field containing a sleep-lock, which ensures exclusive access to the inode’s fields
(such as file length) as well as to the inode’s file or directory content blocks. An inode’s ref, if it is
greater than zero, causes the system to maintain the inode in the table, and not re-use the table entry
for a different inode. Finally, each inode contains a nlink field (on disk and copied in memory if
in memory) that counts the number of directory entries that refer to a file; xv6 won’t free an inode
if its link count is greater than zero.

A struct inode pointer returned by iget() is guaranteed to be valid until the corresponding
call to iput(); the inode won’t be deleted, and the memory referred to by the pointer won’t be
re-used for a different inode. iget() provides non-exclusive access to an inode, so that there can
be many pointers to the same inode. Many parts of the file-system code depend on this behavior of
iget(), both to hold long-term references to inodes (as open files and current directories) and to
prevent races while avoiding deadlock in code that manipulates multiple inodes (such as pathname
lookup).

The struct inode that iget returns may not have any useful content. In order to ensure it
holds a copy of the on-disk inode, code must call ilock. This locks the inode (so that no other
process can ilock it) and reads the inode from the disk, if it has not already been read. iunlock
releases the lock on the inode. Separating acquisition of inode pointers from locking helps avoid
deadlock in some situations, for example during directory lookup. Multiple processes can hold a
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C pointer to an inode returned by iget, but only one process can lock the inode at a time.
The inode table only stores inodes to which kernel code or data structures hold C pointers. Its

main job is synchronizing access by multiple processes. The inode table also happens to cache
frequently-used inodes, but caching is secondary; if an inode is used frequently, the buffer cache
will probably keep it in memory. Code that modifies an in-memory inode writes it to disk with
iupdate.

8.9 Code: Inodes
To allocate a new inode (for example, when creating a file), xv6 calls ialloc (kernel/fs.c:199).
ialloc is similar to balloc: it loops over the inode structures on the disk, one block at a time,
looking for one that is marked free. When it finds one, it claims it by writing the new type to the
disk and then returns an entry from the inode table with the tail call to iget (kernel/fs.c:213). The
correct operation of ialloc depends on the fact that only one process at a time can be holding a
reference to bp: ialloc can be sure that some other process does not simultaneously see that the
inode is available and try to claim it.

iget (kernel/fs.c:247) looks through the inode table for an active entry (ip->ref > 0) with
the desired device and inode number. If it finds one, it returns a new reference to that inode
(kernel/fs.c:256-260). As iget scans, it records the position of the first empty slot (kernel/fs.c:261-
262), which it uses if it needs to allocate a table entry.

Code must lock the inode using ilock before reading or writing its metadata or content. ilock
(kernel/fs.c:293) uses a sleep-lock for this purpose. Once ilock has exclusive access to the inode,
it reads the inode from disk (more likely, the buffer cache) if needed. The function iunlock

(kernel/fs.c:321) releases the sleep-lock, which may cause any processes sleeping to be woken up.
iput (kernel/fs.c:337) releases a C pointer to an inode by decrementing the reference count

(kernel/fs.c:360). If this is the last reference, the inode’s slot in the inode table is now free and can
be re-used for a different inode.

If iput sees that there are no C pointer references to an inode and that the inode has no links
to it (occurs in no directory), then the inode and its data blocks must be freed. iput calls itrunc
to truncate the file to zero bytes, freeing the data blocks; sets the inode type to 0 (unallocated); and
writes the inode to disk (kernel/fs.c:342).

The locking protocol in iput in the case in which it frees the inode deserves a closer look. One
danger is that a concurrent thread might be waiting in ilock to use this inode (e.g., to read a file
or list a directory), and won’t be prepared to find that the inode is no longer allocated. This can’t
happen because there is no way for a system call to get a pointer to an in-memory inode if it has
no links to it and ip->ref is one. That one reference is the reference owned by the thread calling
iput. It’s true that iput checks that the reference count is one outside of its itable.lock critical
section, but at that point the link count is known to be zero, so no thread will try to acquire a new
reference. The other main danger is that a concurrent call to ialloc might choose the same inode
that iput is freeing. This can happen only after the iupdate writes the disk so that the inode
has type zero. This race is benign; the allocating thread will politely wait to acquire the inode’s
sleep-lock before reading or writing the inode, at which point iput is done with it.
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iput() can write to the disk. This means that any system call that uses the file system may
write to the disk, because the system call may be the last one having a reference to the file. Even
calls like read() that appear to be read-only, may end up calling iput(). This, in turn, means
that even read-only system calls must be wrapped in transactions if they use the file system.

There is a challenging interaction between iput() and crashes. iput() doesn’t truncate a file
immediately when the link count for the file drops to zero, because some process might still hold a
reference to the inode in memory: a process might still be reading and writing to the file, because
it successfully opened it. But, if a crash happens before the last process closes the file descriptor
for the file, then the file will be marked allocated on disk but no directory entry will point to it.

File systems handle this case in one of two ways. The simple solution is that on recovery, after
reboot, the file system scans the whole file system for files that are marked allocated, but have no
directory entry pointing to them. If any such file exists, then it can free those files.

The second solution doesn’t require scanning the file system. In this solution, the file system
records on disk (e.g., in the super block) the inode inumber of a file whose link count drops to zero
but whose reference count isn’t zero. If the file system removes the file when its reference count
reaches 0, then it updates the on-disk list by removing that inode from the list. On recovery, the file
system frees any file in the list.

Xv6 implements neither solution, which means that inodes may be marked allocated on disk,
even though they are not in use anymore. This means that over time xv6 runs the risk that it may
run out of disk space.

8.10 Code: Inode content
The on-disk inode structure, struct dinode, contains a size and an array of block numbers (see
Figure 8.3). The inode data is found in the blocks listed in the dinode ’s addrs array. The first
NDIRECT blocks of data are listed in the first NDIRECT entries in the array; these blocks are called
direct blocks. The next NINDIRECT blocks of data are listed not in the inode but in a data block
called the indirect block. The last entry in the addrs array gives the address of the indirect block.
Thus the first 12 kB ( NDIRECT x BSIZE) bytes of a file can be loaded from blocks listed in the
inode, while the next 256 kB ( NINDIRECT x BSIZE) bytes can only be loaded after consulting the
indirect block. This is a good on-disk representation but a complex one for clients. The function
bmap manages the representation so that higher-level routines, such as readi and writei, which
we will see shortly, do not need to manage this complexity. bmap returns the disk block number of
the bn’th data block for the inode ip. If ip does not have such a block yet, bmap allocates one.

The function bmap (kernel/fs.c:383) begins by picking off the easy case: the first NDIRECT
blocks are listed in the inode itself (kernel/fs.c:388-396). The next NINDIRECT blocks are listed
in the indirect block at ip->addrs[NDIRECT]. bmap reads the indirect block (kernel/fs.c:407) and
then reads a block number from the right position within the block (kernel/fs.c:408). If the block
number exceeds NDIRECT+NINDIRECT, bmap panics; writei contains the check that prevents
this from happening (kernel/fs.c:513).

bmap allocates blocks as needed. An ip->addrs[] or indirect entry of zero indicates that no
block is allocated. As bmap encounters zeros, it replaces them with the numbers of fresh blocks,

94

https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L383
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L388-L396
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L407
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L408
https://github.com/mit-pdos/xv6-riscv/blob/riscv//kernel/fs.c#L513


 

type

major

minor

nlink

size

address 1
.....

address 12

indirect

dinode

address 1

address 256

.....

indirect block

data

data

data

data

...

...

Figure 8.3: The representation of a file on disk.

allocated on demand (kernel/fs.c:389-390) (kernel/fs.c:401-402).

itrunc frees a file’s blocks, resetting the inode’s size to zero. itrunc (kernel/fs.c:426) starts by
freeing the direct blocks (kernel/fs.c:432-437), then the ones listed in the indirect block (kernel/fs.c:442-
445), and finally the indirect block itself (kernel/fs.c:447-448).

bmap makes it easy for readi and writei to get at an inode’s data. readi (kernel/fs.c:472)
starts by making sure that the offset and count are not beyond the end of the file. Reads that
start beyond the end of the file return an error (kernel/fs.c:477-478) while reads that start at or
cross the end of the file return fewer bytes than requested (kernel/fs.c:479-480). The main loop
processes each block of the file, copying data from the buffer into dst (kernel/fs.c:482-494). writei
(kernel/fs.c:506) is identical to readi, with three exceptions: writes that start at or cross the end of
the file grow the file, up to the maximum file size (kernel/fs.c:513-514); the loop copies data into the
buffers instead of out (kernel/fs.c:36); and if the write has extended the file, writei must update its
size

The function stati (kernel/fs.c:458) copies inode metadata into the stat structure, which is
exposed to user programs via the stat system call.
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8.11 Code: directory layer
A directory is implemented internally much like a file. Its inode has type T_DIR and its data is a
sequence of directory entries. Each entry is a struct dirent (kernel/fs.h:56), which contains a
name and an inode number. The name is at most DIRSIZ (14) characters; if shorter, it is terminated
by a NULL (0) byte. Directory entries with inode number zero are free.

The function dirlookup (kernel/fs.c:552) searches a directory for an entry with the given name.
If it finds one, it returns a pointer to the corresponding inode, unlocked, and sets *poff to the byte
offset of the entry within the directory, in case the caller wishes to edit it. If dirlookup finds
an entry with the right name, it updates *poff and returns an unlocked inode obtained via iget.
dirlookup is the reason that iget returns unlocked inodes. The caller has locked dp, so if the
lookup was for ., an alias for the current directory, attempting to lock the inode before returning
would try to re-lock dp and deadlock. (There are more complicated deadlock scenarios involving
multiple processes and .., an alias for the parent directory; . is not the only problem.) The caller
can unlock dp and then lock ip, ensuring that it only holds one lock at a time.

The function dirlink (kernel/fs.c:580) writes a new directory entry with the given name and in-
ode number into the directory dp. If the name already exists, dirlink returns an error (kernel/fs.c:586-
590). The main loop reads directory entries looking for an unallocated entry. When it finds one, it
stops the loop early (kernel/fs.c:563-564), with off set to the offset of the available entry. Other-
wise, the loop ends with off set to dp->size. Either way, dirlink then adds a new entry to the
directory by writing at offset off

8.12 Code: Path names
Path name lookup involves a succession of calls to dirlookup, one for each path component.
namei (kernel/fs.c:687) evaluates path and returns the corresponding inode. The function nameiparent
is a variant: it stops before the last element, returning the inode of the parent directory and copying
the final element into name. Both call the generalized function namex to do the real work.

namex (kernel/fs.c:652) starts by deciding where the path evaluation begins. If the path begins
with a slash, evaluation begins at the root; otherwise, the current directory (kernel/fs.c:656-659).
Then it uses skipelem to consider each element of the path in turn (kernel/fs.c:661). Each iteration
of the loop must look up name in the current inode ip. The iteration begins by locking ip and
checking that it is a directory. If not, the lookup fails (kernel/fs.c:662-666). (Locking ip is necessary
not because ip->type can change underfoot—it can’t—but because until ilock runs, ip->type
is not guaranteed to have been loaded from disk.) If the call is nameiparent and this is the last
path element, the loop stops early, as per the definition of nameiparent; the final path element has
already been copied into name, so namex need only return the unlocked ip (kernel/fs.c:667-671).
Finally, the loop looks for the path element using dirlookup and prepares for the next iteration
by setting ip = next (kernel/fs.c:672-677). When the loop runs out of path elements, it returns ip.

The procedure namex may take a long time to complete: it could involve several disk opera-
tions to read inodes and directory blocks for the directories traversed in the pathname (if they are
not in the buffer cache). Xv6 is carefully designed so that if an invocation of namex by one kernel
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thread is blocked on a disk I/O, another kernel thread looking up a different pathname can pro-
ceed concurrently. namex locks each directory in the path separately so that lookups in different
directories can proceed in parallel.

This concurrency introduces some challenges. For example, while one kernel thread is looking
up a pathname another kernel thread may be changing the directory tree by unlinking a directory.
A potential risk is that a lookup may be searching a directory that has been deleted by another
kernel thread and its blocks have been re-used for another directory or file.

Xv6 avoids such races. For example, when executing dirlookup in namex, the lookup thread
holds the lock on the directory and dirlookup returns an inode that was obtained using iget.
iget increases the reference count of the inode. Only after receiving the inode from dirlookup

does namex release the lock on the directory. Now another thread may unlink the inode from the
directory but xv6 will not delete the inode yet, because the reference count of the inode is still
larger than zero.

Another risk is deadlock. For example, next points to the same inode as ip when looking
up ".". Locking next before releasing the lock on ip would result in a deadlock. To avoid this
deadlock, namex unlocks the directory before obtaining a lock on next. Here again we see why
the separation between iget and ilock is important.

8.13 File descriptor layer
A cool aspect of the Unix interface is that most resources in Unix are represented as files, including
devices such as the console, pipes, and of course, real files. The file descriptor layer is the layer
that achieves this uniformity.

Xv6 gives each process its own table of open files, or file descriptors, as we saw in Chapter 1.
Each open file is represented by a struct file (kernel/file.h:1), which is a wrapper around either
an inode or a pipe, plus an I/O offset. Each call to open creates a new open file (a new struct

file): if multiple processes open the same file independently, the different instances will have
different I/O offsets. On the other hand, a single open file (the same struct file) can appear
multiple times in one process’s file table and also in the file tables of multiple processes. This
would happen if one process used open to open the file and then created aliases using dup or
shared it with a child using fork. A reference count tracks the number of references to a particular
open file. A file can be open for reading or writing or both. The readable and writable fields
track this.

All the open files in the system are kept in a global file table, the ftable. The file table
has functions to allocate a file (filealloc), create a duplicate reference (filedup), release a
reference (fileclose), and read and write data (fileread and filewrite).

The first three follow the now-familiar form. filealloc (kernel/file.c:30) scans the file table for
an unreferenced file (f->ref == 0) and returns a new reference; filedup (kernel/file.c:48) incre-
ments the reference count; and fileclose (kernel/file.c:60) decrements it. When a file’s reference
count reaches zero, fileclose releases the underlying pipe or inode, according to the type.

The functions filestat, fileread, and filewrite implement the stat, read, and write
operations on files. filestat (kernel/file.c:88) is only allowed on inodes and calls stati. fileread
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and filewrite check that the operation is allowed by the open mode and then pass the call
through to either the pipe or inode implementation. If the file represents an inode, fileread and
filewrite use the I/O offset as the offset for the operation and then advance it (kernel/file.c:122-
123) (kernel/file.c:153-154). Pipes have no concept of offset. Recall that the inode functions require
the caller to handle locking (kernel/file.c:94-96) (kernel/file.c:121-124) (kernel/file.c:163-166). The in-
ode locking has the convenient side effect that the read and write offsets are updated atomically,
so that multiple writing to the same file simultaneously cannot overwrite each other’s data, though
their writes may end up interlaced.

8.14 Code: System calls
With the functions that the lower layers provide, the implementation of most system calls is trivial
(see (kernel/sysfile.c)). There are a few calls that deserve a closer look.

The functions sys_link and sys_unlink edit directories, creating or removing references to
inodes. They are another good example of the power of using transactions. sys_link (kernel/sys-
file.c:124) begins by fetching its arguments, two strings old and new (kernel/sysfile.c:129). Assuming
old exists and is not a directory (kernel/sysfile.c:133-136), sys_link increments its ip->nlink
count. Then sys_link calls nameiparent to find the parent directory and final path element
of new (kernel/sysfile.c:149) and creates a new directory entry pointing at old ’s inode (kernel/sys-
file.c:152). The new parent directory must exist and be on the same device as the existing inode:
inode numbers only have a unique meaning on a single disk. If an error like this occurs, sys_link
must go back and decrement ip->nlink.

Transactions simplify the implementation because it requires updating multiple disk blocks,
but we don’t have to worry about the order in which we do them. They either will all succeed or
none. For example, without transactions, updating ip->nlink before creating a link, would put
the file system temporarily in an unsafe state, and a crash in between could result in havoc. With
transactions we don’t have to worry about this.

sys_link creates a new name for an existing inode. The function create (kernel/sysfile.c:246)
creates a new name for a new inode. It is a generalization of the three file creation system calls:
open with the O_CREATE flag makes a new ordinary file, mkdir makes a new directory, and
mkdev makes a new device file. Like sys_link, create starts by calling nameiparent to get
the inode of the parent directory. It then calls dirlookup to check whether the name already
exists (kernel/sysfile.c:256). If the name does exist, create’s behavior depends on which system
call it is being used for: open has different semantics from mkdir and mkdev. If create is being
used on behalf of open (type == T_FILE) and the name that exists is itself a regular file, then
open treats that as a success, so create does too (kernel/sysfile.c:260). Otherwise, it is an error
(kernel/sysfile.c:261-262). If the name does not already exist, create now allocates a new inode
with ialloc (kernel/sysfile.c:265). If the new inode is a directory, create initializes it with . and
.. entries. Finally, now that the data is initialized properly, create can link it into the parent
directory (kernel/sysfile.c:278). create, like sys_link, holds two inode locks simultaneously: ip
and dp. There is no possibility of deadlock because the inode ip is freshly allocated: no other
process in the system will hold ip ’s lock and then try to lock dp.
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Using create, it is easy to implement sys_open, sys_mkdir, and sys_mknod. sys_open
(kernel/sysfile.c:305) is the most complex, because creating a new file is only a small part of what
it can do. If open is passed the O_CREATE flag, it calls create (kernel/sysfile.c:320). Otherwise, it
calls namei (kernel/sysfile.c:326). create returns a locked inode, but namei does not, so sys_open
must lock the inode itself. This provides a convenient place to check that directories are only
opened for reading, not writing. Assuming the inode was obtained one way or the other, sys_open
allocates a file and a file descriptor (kernel/sysfile.c:344) and then fills in the file (kernel/sysfile.c:356-
361). Note that no other process can access the partially initialized file since it is only in the current
process’s table.

Chapter 7 examined the implementation of pipes before we even had a file system. The function
sys_pipe connects that implementation to the file system by providing a way to create a pipe pair.
Its argument is a pointer to space for two integers, where it will record the two new file descriptors.
Then it allocates the pipe and installs the file descriptors.

8.15 Real world
The buffer cache in a real-world operating system is significantly more complex than xv6’s, but it
serves the same two purposes: caching and synchronizing access to the disk. Xv6’s buffer cache,
like V6’s, uses a simple least recently used (LRU) eviction policy; there are many more complex
policies that can be implemented, each good for some workloads and not as good for others. A more
efficient LRU cache would eliminate the linked list, instead using a hash table for lookups and a
heap for LRU evictions. Modern buffer caches are typically integrated with the virtual memory
system to support memory-mapped files.

Xv6’s logging system is inefficient. A commit cannot occur concurrently with file-system sys-
tem calls. The system logs entire blocks, even if only a few bytes in a block are changed. It performs
synchronous log writes, a block at a time, each of which is likely to require an entire disk rotation
time. Real logging systems address all of these problems.

Logging is not the only way to provide crash recovery. Early file systems used a scavenger
during reboot (for example, the UNIX fsck program) to examine every file and directory and the
block and inode free lists, looking for and resolving inconsistencies. Scavenging can take hours
for large file systems, and there are situations where it is not possible to resolve inconsistencies in
a way that causes the original system calls to be atomic. Recovery from a log is much faster and
causes system calls to be atomic in the face of crashes.

Xv6 uses the same basic on-disk layout of inodes and directories as early UNIX; this scheme
has been remarkably persistent over the years. BSD’s UFS/FFS and Linux’s ext2/ext3 use essen-
tially the same data structures. The most inefficient part of the file system layout is the directory,
which requires a linear scan over all the disk blocks during each lookup. This is reasonable when
directories are only a few disk blocks, but is expensive for directories holding many files. Microsoft
Windows’s NTFS, macOS’s HFS, and Solaris’s ZFS, just to name a few, implement a directory as
an on-disk balanced tree of blocks. This is complicated but guarantees logarithmic-time directory
lookups.

Xv6 is naive about disk failures: if a disk operation fails, xv6 panics. Whether this is reasonable
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depends on the hardware: if an operating systems sits atop special hardware that uses redundancy
to mask disk failures, perhaps the operating system sees failures so infrequently that panicking is
okay. On the other hand, operating systems using plain disks should expect failures and handle
them more gracefully, so that the loss of a block in one file doesn’t affect the use of the rest of the
file system.

Xv6 requires that the file system fit on one disk device and not change in size. As large
databases and multimedia files drive storage requirements ever higher, operating systems are de-
veloping ways to eliminate the “one disk per file system” bottleneck. The basic approach is to
combine many disks into a single logical disk. Hardware solutions such as RAID are still the most
popular, but the current trend is moving toward implementing as much of this logic in software as
possible. These software implementations typically allow rich functionality like growing or shrink-
ing the logical device by adding or removing disks on the fly. Of course, a storage layer that can
grow or shrink on the fly requires a file system that can do the same: the fixed-size array of inode
blocks used by xv6 would not work well in such environments. Separating disk management from
the file system may be the cleanest design, but the complex interface between the two has led some
systems, like Sun’s ZFS, to combine them.

Xv6’s file system lacks many other features of modern file systems; for example, it lacks sup-
port for snapshots and incremental backup.

Modern Unix systems allow many kinds of resources to be accessed with the same system calls
as on-disk storage: named pipes, network connections, remotely-accessed network file systems,
and monitoring and control interfaces such as /proc. Instead of xv6’s if statements in fileread
and filewrite, these systems typically give each open file a table of function pointers, one per
operation, and call the function pointer to invoke that inode’s implementation of the call. Network
file systems and user-level file systems provide functions that turn those calls into network RPCs
and wait for the response before returning.

8.16 Exercises
1. Why panic in balloc ? Can xv6 recover?

2. Why panic in ialloc ? Can xv6 recover?

3. Why doesn’t filealloc panic when it runs out of files? Why is this more common and
therefore worth handling?

4. Suppose the file corresponding to ip gets unlinked by another process between sys_link

’s calls to iunlock(ip) and dirlink. Will the link be created correctly? Why or why not?

5. create makes four function calls (one to ialloc and three to dirlink) that it requires
to succeed. If any doesn’t, create calls panic. Why is this acceptable? Why can’t any of
those four calls fail?

6. sys_chdir calls iunlock(ip) before iput(cp->cwd), which might try to lock cp->cwd,
yet postponing iunlock(ip) until after the iput would not cause deadlocks. Why not?
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7. Implement the lseek system call. Supporting lseek will also require that you modify
filewrite to fill holes in the file with zero if lseek sets off beyond f->ip->size.

8. Add O_TRUNC and O_APPEND to open, so that > and >> operators work in the shell.

9. Modify the file system to support symbolic links.

10. Modify the file system to support named pipes.

11. Modify the file and VM system to support memory-mapped files.

101



102



Chapter 9

Concurrency revisited

Simultaneously obtaining good parallel performance, correctness despite concurrency, and under-
standable code is a big challenge in kernel design. Straightforward use of locks is the best path to
correctness, but is not always possible. This chapter highlights examples in which xv6 is forced to
use locks in an involved way, and examples where xv6 uses lock-like techniques but not locks.

9.1 Locking patterns

Cached items are often a challenge to lock. For example, the file system’s block cache (ker-
nel/bio.c:26) stores copies of up to NBUF disk blocks. It’s vital that a given disk block have at
most one copy in the cache; otherwise, different processes might make conflicting changes to dif-
ferent copies of what ought to be the same block. Each cached block is stored in a struct buf
(kernel/buf.h:1). A struct buf has a lock field which helps ensure that only one process uses
a given disk block at a time. However, that lock is not enough: what if a block is not present in
the cache at all, and two processes want to use it at the same time? There is no struct buf
(since the block isn’t yet cached), and thus there is nothing to lock. Xv6 deals with this situation
by associating an additional lock (bcache.lock) with the set of identities of cached blocks.
Code that needs to check if a block is cached (e.g., bget (kernel/bio.c:59)), or change the set of
cached blocks, must hold bcache.lock; after that code has found the block and struct buf
it needs, it can release bcache.lock and lock just the specific block. This is a common pattern:
one lock for the set of items, plus one lock per item.

Ordinarily the same function that acquires a lock will release it. But a more precise way to view
things is that a lock is acquired at the start of a sequence that must appear atomic, and released
when that sequence ends. If the sequence starts and ends in different functions, or different threads,
or on different CPUs, then the lock acquire and release must do the same. The function of the lock
is to force other uses to wait, not to pin a piece of data to a particular agent. One example is the
acquire in yield (kernel/proc.c:503), which is released in the scheduler thread rather than in the
acquiring process. Another example is the acquiresleep in ilock (kernel/fs.c:293); this code
often sleeps while reading the disk; it may wake up on a different CPU, which means the lock may
be acquired and released on different CPUs.
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Freeing an object that is protected by a lock embedded in the object is a delicate business,
since owning the lock is not enough to guarantee that freeing would be correct. The problem
case arises when some other thread is waiting in acquire to use the object; freeing the object
implicitly frees the embedded lock, which will cause the waiting thread to malfunction. One so-
lution is to track how many references to the object exist, so that it is only freed when the last
reference disappears. See pipeclose (kernel/pipe.c:59) for an example; pi->readopen and
pi->writeopen track whether the pipe has file descriptors referring to it.

Usually one sees locks around sequences of reads and writes to sets of related items; the locks
ensure that other threads see only completed sequences of updates (as long as they, too, lock).
What about situations where the update is a simple write to a single shared variable? For example,
setkilled and killed (kernel/proc.c:607) lock around their simple uses of p->killed. If
there were no lock, one thread could write p->killed at the same time that another thread reads
it. This is a race, and the C language specification says that a race yields undefined behavior, which
means the program may crash or yield incorrect results1. The locks prevent the race and avoid the
undefined behavior.

One reason races can break programs is that, if there are no locks or equivalent constructs,
the compiler may generate machine code that reads and writes memory in ways quite different
than the original C code. For example, the machine code of a thread calling killed could copy
p->killed to a register and read only that cached value; this would mean that the thread might
never see any writes to p->killed. The locks prevent such caching.

9.2 Lock-like patterns

In many places xv6 uses a reference count or a flag in a lock-like way to indicate that an object is
allocated and should not be freed or re-used. A process’s p->state acts in this way, as do the
reference counts in file, inode, and buf structures. While in each case a lock protects the flag
or reference count, it is the latter that prevents the object from being prematurely freed.

The file system uses struct inode reference counts as a kind of shared lock that can be held
by multiple processes, in order to avoid deadlocks that would occur if the code used ordinary locks.
For example, the loop in namex (kernel/fs.c:652) locks the directory named by each pathname
component in turn. However, namex must release each lock at the end of the loop, since if it held
multiple locks it could deadlock with itself if the pathname included a dot (e.g., a/./b). It might
also deadlock with a concurrent lookup involving the directory and ... As Chapter 8 explains,
the solution is for the loop to carry the directory inode over to the next iteration with its reference
count incremented, but not locked.

Some data items are protected by different mechanisms at different times, and may at times be
protected from concurrent access implicitly by the structure of the xv6 code rather than by explicit
locks. For example, when a physical page is free, it is protected by kmem.lock (kernel/kalloc.c:24).
If the page is then allocated as a pipe (kernel/pipe.c:23), it is protected by a different lock (the em-
bedded pi->lock). If the page is re-allocated for a new process’s user memory, it is not protected

1“Threads and data races” in https://en.cppreference.com/w/c/language/memory_model
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by a lock at all. Instead, the fact that the allocator won’t give that page to any other process (until it
is freed) protects it from concurrent access. The ownership of a new process’s memory is complex:
first the parent allocates and manipulates it in fork, then the child uses it, and (after the child
exits) the parent again owns the memory and passes it to kfree. There are two lessons here: a
data object may be protected from concurrency in different ways at different points in its lifetime,
and the protection may take the form of implicit structure rather than explicit locks.

A final lock-like example is the need to disable interrupts around calls to mycpu() (ker-
nel/proc.c:83). Disabling interrupts causes the calling code to be atomic with respect to timer in-
terrupts that could force a context switch, and thus move the process to a different CPU.

9.3 No locks at all
There are a few places where xv6 shares mutable data with no locks at all. One is in the implemen-
tation of spinlocks, although one could view the RISC-V atomic instructions as relying on locks
implemented in hardware. Another is the started variable in main.c (kernel/main.c:7), used
to prevent other CPUs from running until CPU zero has finished initializing xv6; the volatile
ensures that the compiler actually generates load and store instructions.

Xv6 contains cases in which one CPU or thread writes some data, and another CPU or thread
reads the data, but there is no specific lock dedicated to protecting that data. For example, in
fork, the parent writes the child’s user memory pages, and the child (a different thread, perhaps
on a different CPU) reads those pages; no lock explicitly protects those pages. This is not strictly a
locking problem, since the child doesn’t start executing until after the parent has finished writing. It
is a potential memory ordering problem (see Chapter 6), since without a memory barrier there’s no
reason to expect one CPU to see another CPU’s writes. However, since the parent releases locks,
and the child acquires locks as it starts up, the memory barriers in acquire and release ensure
that the child’s CPU sees the parent’s writes.

9.4 Parallelism
Locking is primarily about suppressing parallelism in the interests of correctness. Because per-
formance is also important, kernel designers often have to think about how to use locks in a way
that both achieves correctness and allows parallelism. While xv6 is not systematically designed for
high performance, it’s still worth considering which xv6 operations can execute in parallel, and
which might conflict on locks.

Pipes in xv6 are an example of fairly good parallelism. Each pipe has its own lock, so that dif-
ferent processes can read and write different pipes in parallel on different CPUs. For a given pipe,
however, the writer and reader must wait for each other to release the lock; they can’t read/write
the same pipe at the same time. It is also the case that a read from an empty pipe (or a write to a
full pipe) must block, but this is not due to the locking scheme.

Context switching is a more complex example. Two kernel threads, each executing on its own
CPU, can call yield, sched, and swtch at the same time, and the calls will execute in parallel.
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The threads each hold a lock, but they are different locks, so they don’t have to wait for each other.
Once in scheduler, however, the two CPUs may conflict on locks while searching the table
of processes for one that is RUNNABLE. That is, xv6 is likely to get a performance benefit from
multiple CPUs during context switch, but perhaps not as much as it could.

Another example is concurrent calls to fork from different processes on different CPUs. The
calls may have to wait for each other for pid_lock and kmem.lock, and for per-process locks
needed to search the process table for an UNUSED process. On the other hand, the two forking
processes can copy user memory pages and format page-table pages fully in parallel.

The locking scheme in each of the above examples sacrifices parallel performance in certain
cases. In each case it’s possible to obtain more parallelism using a more elaborate design. Whether
it’s worthwhile depends on details: how often the relevant operations are invoked, how long the
code spends with a contended lock held, how many CPUs might be running conflicting operations
at the same time, whether other parts of the code are more restrictive bottlenecks. It can be difficult
to guess whether a given locking scheme might cause performance problems, or whether a new
design is significantly better, so measurement on realistic workloads is often required.

9.5 Exercises
1. Modify xv6’s pipe implementation to allow a read and a write to the same pipe to proceed in

parallel on different cores.

2. Modify xv6’s scheduler() to reduce lock contention when different cores are looking
for runnable processes at the same time.

3. Eliminate some of the serialization in xv6’s fork().
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Chapter 10

Summary

This text introduced the main ideas in operating systems by studying one operating system, xv6,
line by line. Some code lines embody the essence of the main ideas (e.g., context switching, user/k-
ernel boundary, locks, etc.) and each line is important; other code lines provide an illustration of
how to implement a particular operating system idea and could easily be done in different ways
(e.g., a better algorithm for scheduling, better on-disk data structures to represent files, better log-
ging to allow for concurrent transactions, etc.). All the ideas were illustrated in the context of one
particular, very successful system call interface, the Unix interface, but those ideas carry over to
the design of other operating systems.
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