
CS	3510:	Algorithms
Assignment	2
Assignment

Problems	identified	by	x.y(z)	denote	the	problem	“y”,	in	chapter	“x”	of	the	textbook,	with	part	“z”.	If	“z”	is
not	noted,	then	the	entire	problem	is	required.

Assignment	2a

2.5(a,	c,	e)	Use	the	master	theorem,	show	work.
Solve	recurrence	relation	T(n)	=	2	T(n/3)	+	n.	Use	the	master	theorem,	show	work.

Assignment	2b

2.5(b,	d)	Use	the	master	theorem,	show	comparison.
Solve	recurrence	relation	T(n)	=	8	T(n/3)	+	n^2.	Use	the	master	theorem,	show	work.
2.5(g)	Use	the	substitution	method.	Show	the	pattern	and	determination	of	k_max.
Complete	the	tasks	for	Programming	Assignment	 binary_search .

Assignment	2c

2.5(f,	h)	Use	the	substitution	method.	Show	the	pattern	and	determination	of	k_max.
2.16	Find	an	algorithm,	give	pseudo-code,	argue	correctness,	analyze	the	runtime,	showing	it	is
O(log(n)).	The	values	stored	are	integers,	not	necessarily	positive	Hint:	You	should	know	how	to	find
items	in	a	sorted	array	in	O(log(n)).
Complete	the	tasks	for	Programming	Assignment	 ternary_search .

Assignment	2d

2.5(i,	j)	Use	the	substitution	method.	Show	the	pattern	and	determination	of	k_max.
2.19	Analyze	the	complexity	of	the	algorithm	for	part	(a).	Provide	your	divide	and	conquer	solution	and
its	complexity	analysis	for	part	(b).
Complete	the	tasks	for	Programming	Assignment	Data	Collection.

Assignment	2e

2.5(k)	Use	the	substitution	method.	Show	the	pattern	and	determination	of	k_max.
2.22	Find	an	algorithm,	give	pseudo-code,	argue	correctness,	analyze	the	runtime.
If	one	algorithm	is	O(log(m+n)),	another	is	O(log(m)	+	log(n)),	which	is	more	efficient?	Give	your	proof.
Complete	the	tasks	for	Programming	Assignment	Chart	Data.

Assignment	2f

2.14	Find	a	divide-and-conquer	algorithm,	write	the	recurrence	relation,	solve	it.
2.34	Find	a	divide-and-conquer	algorithm,	write	the	recurrence	relation,	solve	it.	The	book	says	“linear”.
We	are	not	as	optimistic.	Any	polynomial	divide-and-conquer	algorithm	is	acceptable.

Assignment	2z,	Due	Never	(optional)

2.4(A)	Write	down	the	recurrence	relation.	Solve	it.
2.4(B)	Write	down	the	recurrence	relation.	Solve	it.
2.4(part	C)	Write	down	the	recurrence	relation.	Solve	it.
2.4	Which	would	you	choose?
2.25(a)	Fill	in	the	missing	code,	give	a	recurrence	relation,	and	solve	it.
2.25(b)	Fill	in	the	missing	code,	give	a	recurrence	relation,	and	solve	it.
2.17	Find	an	algorithm,	prove	the	runtime	is	O(log(n)).

Programming	Assignment	 binary_search

Create	a	directory	in	your	repository	name	 02-search 	to	store	your	work	for	this	task.
Use	the	file	 search.cpp 	for	this	task.
Write	the	function	 unsigned	int	binary_search(	const	std::vector<	int	>	&data,	int	value	) .
Verify	that	the	function	will	correctly	find	the	index	of	 value 	within	 data .
You	may	assume	that	 value 	is	present,	and	 data 	is	already	sorted	in	ascending	order.
At	the	top	of	your	source	file,	include	a	comment	with	your	estimated	Big-Oh	complexity	of	the
algorithm.



In	the	first	pass	of	your	code,	write	it	to	handle	vectors	whose	sizes	are	powers	of	2.
In	the	second	pass	of	your	code,	write	it	to	handle	vectors	whose	sizes	are	not	powers	of	2.

Programming	Assignment	 ternary_search

Write	the	function	 unsigned	int	ternary_search(	const	std::vector<	int	>	&data,	int	value	) .
Add	to	the	file	 search.cpp 	for	this	task.
Verify	that	the	function	will	correctly	find	the	index	of	 value 	within	 data .
You	may	assume	that	 value 	is	present,	and	 data 	is	already	sorted	in	ascending	order.
At	the	top	of	your	source	file,	include	a	comment	with	your	estimated	Big-Oh	complexity	of	the
algorithm.
ternary_search 	divides	its	input	array	into	3	equally	sized	groups,	in	the	same	way	that	 binary_search
divides	into	2	equally	sized	groups.
In	the	first	pass	of	your	code,	write	it	to	handle	vectors	whose	sizes	are	powers	of	3.
In	the	second	pass	of	your	code,	write	it	to	handle	vectors	whose	sizes	are	not	powers	of	3.

Programming	Assignment	Data	Collection

Time	 binary_search 	and	 ternary_search 	on	vectors	of	sizes	2^0,	2^1,	…,	2^30.
Be	sure	to	do	correct	statistical	data	collection.
Submit	a	table	of	the	data	collected,	and	declaration	of	which	appears	to	be	faster.

Programming	Assignment	Chart	Data

Chart	the	normalized	runtimes	of	 binary_search 	and	 ternary_search .
Add	to	the	chart	curves	for	N^1 ⁄2,	N^1 ⁄3,	LOG_2(N),	LOG_3(N)	and	1.
Submit	the	chart,	and	a	statement	discussing	which	algorithm	has	better	Big-Oh,	and	which	algorithm	is
faster.
Save	the	document	as	 search-chart.pdf .

Submission

Submit	you	solutions	by	the	due	date	and	time.	For	written	problems,	your	work	and	answers	as	a	PDF
to	Canvas.	For	code,	submit	the	source	code	to	the	class	git	repository.	For	tables	and	graphs,	submit	a
PDF	to	Canvas.


