
CS	3510:	Algorithms
Assignment	3
Assignment

Problems	identified	by	x.y(z)	denote	the	problem	“y”,	in	chapter	“x”	of	the	textbook,	with	part	“z”.	If	“z”	is
not	noted,	then	the	entire	problem	is	required.

Assignment	3a

3.28(a,b)	Show	all	satisfying	truth	assignments,	and	show	why	your	formula	is	unsatisfiable.
3.11	Give	an	algorithm,	argue	correctness,	analyze	runtime.
Complete	the	tasks	for	Programming	Assignment	 Graph 	Class.

Assignment	3b

3.2	(b)	DFS	with	pre/post	numbers	and	edge	type	identification.
3.12	Prove	means	give	a	convincing	argument.	Counter	example	means	a	single	concrete	example	that
proves	the	statement	is	false.
3.22	The	algorithm	is	a	simple	extension	of	one	in	the	chapter.
3.28	(part	c)	This	means	draw	the	graphs	that	result	from	the	example	and	your	example.
Complete	the	tasks	for	Programming	Assignment	 dfs .

Assignment	3c

3.4	(i)(a,b,c,d)	(i)	is	the	first	graph	in	the	problem.
3.28	(d)	The	hint	should	give	it	away.
Complete	the	tasks	for	Programming	Assignment	 pre/post-visit .

Assignment	3d

3.15	(a)	Describe	a	graph	problem	that	represents	this	problem,	and	the	graph	algorithm	that	will
answer	the	question	in	linear	time.
3.15	(b)	Describe	a	graph	problem	that	represents	this	problem,	and	the	graph	algorithm	that	will
answer	the	question	in	linear	time.
3.28(e,f)	For	f,	prove	that	the	runtime	is	linear.
Complete	the	tasks	for	Programming	Assignment	Search.

Assignment	3z,	Due	Never	(optional)

3.18	Give	the	preprocessing	algorithm,	and	the	query	algorithm.	Analyze	their	complexity.
3.24	The	algorithm	is	a	simple	extension	of	one	in	the	chapter.

Programming	Assignment	 Graph 	Class

Create	and	work	in	the	directory	 03-graph .
Implement	a	 Graph 	class.
You	choose	whether	to	use	an	adjacency-matrix	or	an	adjacency-list.
Nodes	identifiers	are	unsigned	integers	from	 1 	to	 n ,	inclusive.
Graph() 	constructor
void	setNodeCount(unsigned	int	count); 	sets	the	number	of	nodes	in	the	graph,	updating	the	size	of	the
adjacency	matrix/list,	and	removing	all	edges.
void	addUEdge(unsigned	int	u,	unsigned	int	v); 	adds	an	unweighted,	undirected	edge	between	 u 	and	 v .
void	addDEdge(unsigned	int	u,	unsigned	int	v); 	adds	an	unweighted,	directed	edge	from	 u 	to	 v .
void	addUEdge(unsigned	int	u,	unsigned	int	v,	double	w); 	adds	a	weighted,	undirected	edge	between	 u
and	 v .
void	addDEdge(unsigned	int	u,	unsigned	int	v,	double	w); 	adds	a	weighted,	directed	edge	from	 u 	to	 v .
unsigned	int	getNodeCount()	const; 	returns	the	number	of	nodes	in	the	graph.
double	getEdge(unsigned	int	u,	unsigned	int	v)	const; 	returns	the	weight	of	the	edge	from	 u 	to	 v .	If	no
edge	exists,	returns	 0.0 .
Test	the	code	by	writing	sample	code	that	stores	the	graphs	from	Figures	3.1	and	3.2,	and	then	displays
a	table	of	the	edges	by	fetching	them	from	the	graph.

Programming	Assignment	 dfs

Add	to	the	 Graph 	class.
Note	that	you	will	likely	need	to	add	data	members	for	visited	data.



void	explore(unsigned	int	u); 	Does	the	explore	algorithm	described	in	Figure	3.3.	(except	pre/post	visit
calls)
void	dfs(); 	Does	the	depth-first	search	algorithm	described	in	Figure	3.5.
void	markAllUnvisited(); 	marks	all	nodes	as	unvisited.
int	getVisited(unsigned	int	u)	const; 	returns	 1 	if	 u 	has	been	visited,	 0 	if	 u 	has	not	been	visited.
Be	sure	that	the	visited	data	is	resized	correctly	when	necessary.
Add	to	the	test	programs	for	each	of	the	2	sample	graphs.
Test	the	code	by	running	explore	on	various	vertices.
Test	the	code	by	running	dfs	on	the	sample	graphs.

Programming	Assignment	 pre/post-visit

Add	to	the	 Graph 	class.
Note	you	will	need	to	add	data	members	to	support	the	bookkeeping.
void	previsit(unsigned	int	u); 	marks	the	connected	component	number,	and	previsit	number.
void	postvisit(unsigned	int	u); 	marks	postvisit	number.
unsigned	int	getConnectedComponent(unsigned	int	u)	const; 	returns	the	node’s	connected	component
number.
unsigned	int	getPrevisit(unsigned	int	u)	const; 	returns	the	node’s	previsit	number.
unsigned	int	getPostvisit(unsigned	int	u)	const; 	returns	the	node’s	postvisit	number.
Be	sure	that	the	data	are	resized	correctly	when	necessary.
Add	to	 explore 	to	correctly	use	these	methods.
Add	to	 dfs 	to	correctly	initialize	the	bookkeeping	data.
Test	the	code	by	running	dfs	on	the	sample	graphs,	and	displaying	the	pre/post/cc	data	for	each	node.

Programming	Assignment	Search

Use	your	 Graph 	class	to	evaluate	the	graphs	available	in	 /usr/citlocal/cs3510/connectivity-graphs 	on
the	department	computers.
The	graph	filenames	have	the	format	 cgraph-n-s.txt ,	where	 n 	is	the	number	of	vertices	and	 s 	is	a
graph	number.	For	example,	 cgraph-20000-2.txt 	is	the	second	graph	with	 20000 	vertices.
Each	file	has	a	first	line	with	the	number	of	vertices,	followed	one	line	per	edge.	An	edge	description
line	has	the	format	 u	v	w ,	where	 u 	and	 v 	are	integers,	and	 w 	is	a	floating	point	number.	 u 	and	 v 	are
vertex	numbers.	 w 	is	the	edge	weight.
All	edges	are	undirected.
Any	edges	not	listed	in	the	file	do	not	exist.
The	vertices	are	numbered	1	-	 n .
For	each	of	the	graphs	with	10000	vertices,	compute	the	connected	component	numbers	using	 dfs .	For
each	connected	component,	sum	the	node	numbers.	Display	the	sums	from	smallest	to	largest	sum,	on	a
single	line,	with	a	space	between	each	number.
In	your	repository,	store	the	output	for	each	graph	in	a	file	with	the	same	name	as	the	graph,	except,
replace	the	 .txt 	with	 .out .
For	example,	 cgraph-10-3.txt 	would	be	store	a	line	with	 13	17	25 	into	the	file	 cgraph-10-3.out .

Submission

Submit	you	solutions	by	the	due	date	and	time.	For	written	problems,	your	work	and	answers	as	a	PDF
to	Canvas.	For	code,	submit	the	source	code	to	the	class	git	repository.	For	tables	and	graphs,	submit	a
PDF	to	Canvas.


