
Interactive Web Development

Functions

Dr Russ Ross

Dixie State University—Computer and Information Technologies

Spring 2016

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 1 / 49

Functions

Functions

Reading: JavaScript: The Good Parts, Chapter 4

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 2 / 49

Functions

Functions

The implementation of functions is one of the best parts of JavaScript.
A function encloses a set of statements:

I Functions are the fundamental modular unit of JavaScript
I Functions are used for code reuse, information hiding, and

composition
I Functions are used to specify the behavior of objects

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 3 / 49

Functions Function Objects

Function objects

In JavaScript, functions are objects:

I Objects are collections of name/value pairs having a hidden link to
a prototype object

I Objects produced from object literals are linked to
Object.prototype

Function objects are also collections of name/value pairs:

I Function objects are linked to Function.prototype (which is itself
linked to Object.prototype)

I Every function is created with two additional hidden properties:
the function’s context and the code that implements the function’s
behavior

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 4 / 49

Functions Function Objects

Function objects

Note that each function object has a prototype property:

I This is not the same as the hidden prototype link to
Function.prototype

I The prototype property links to an object
I This object has a constructor property whose value is the

function

More about this when we discuss inheritance. . .

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 5 / 49

Functions Function Objects

Function objects

As objects, functions can be used like any other value. A function can:

I be stored in a variable, object, or array
I be passed as an argument to a function
I be returned from a function
I have methods

Functions are special because they can be invoked.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 6 / 49

Functions Function Literal

Function literal

Function objects are created with function literals:
// Create a variable called add and store a function

// in it that adds two numbers

var add = function (a, b) {

return a + b;

};

There are four parts to a function literal:

I The first part is the the reserved word function
I The second (optional) part is the name, used for recursion or by

debuggers and other tools. A nameless function is anonymous.
I The third part is the set of zero or more parameters, wrapped in

parentheses and separated by commas. They become local
variables in the function, initialized by the caller.

I The fourth part is the body of the function, statements wrapped in
curly braces that are executed when the function is invoked.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 7 / 49

Functions Function Literal

Function literal

A function literal can appear anywhere that an expression can appear.
Functions can be defined inside of other functions:

I An inner function has access to its own parameters and variables
I An inner function also has access to the parameters and variables

of the function it is nested within
I The function object created by a function literal has a hidden link

to the context in which it was defined
I This is called a closure, and is the source of enormous

expressive power

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 8 / 49

Functions Invocation

Invocation

Invoking a function suspends the execution of the current function and
passes control to the new function. Each function receives two
parameters in addition to those declared in the function definition:

I this: the this parameter is very important to object-oriented
programming. There are four invocation patterns:

I the method invocation pattern
I the function invocation pattern
I the constructor invocation pattern
I the apply invocation pattern

The value of this is determined by which of these invocation
patterns was used to call the function.

I arguments: this bonus parameter is a list of the arguments. We
will discuss it after the invocation patterns.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 9 / 49

Functions Invocation

Invocation

The invocation operator is a pair of parentheses following any
expression that produces a function value: a variable name that
contains a function, a function literal, a function call that returns a
function, . . .

The parentheses can contain zero or more arguments. Each of the
arguments will be assigned to the function’s parameter names. If they
do not line up there is no runtime error:

I if there are too many arguments, the extra argument values will be
ignored

I if there are too few arguments, the undefined value will be
substituted for the missing values

There is no type checking on argument values. Any type of value can
be passed to any parameter.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 10 / 49

Functions Invocation

The method invocation pattern

When a function is stored as a property of an object, we call it a
method of that object. When a method is invoked, this is bound to
that object. If an invocation expression contains a refinement (a .

expression or [subscript] expression), it is invoked as a method:
var myObject = {

value: 0;

increment: function (inc) {

this.value += typeof inc === ’number ’ ? inc : 1;

}

};

myObject.increment ();

document.writeln(myObject.value); // 1

myObject.increment (2);

document.writeln(myObject.value); // 3

This binding of this happens at invocation time; this late binding
makes these public methods highly reusable.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 11 / 49

Functions Invocation

The function invocation pattern

When a function is not the property of an object, then it is invoked as a
function:

var sum = add(3, 4); // sum is 7

In this case, this is bound to the global object. This is a mistake.
When an inner function is invoked, this should retain the this binding
of the enclosing function:

myObject.double = function () {

var helper = function () {

this.value = add(this.value , this.value);

};

helper (); // invoke helper as a function

};

myObject.double (); // invoke double as a method

document.writeln(myObject.getValue ());

This code is broken; this refers to the wrong thing inside helper.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 12 / 49

Functions Invocation

The function invocation pattern

Fortunately, there is an easy workaround. Normal variables in the
containing function are accessible to the inner function:

myObject.double = function () {

var that = this; // Workaround

var helper = function () {

that.value = add(that.value , that.value);

};

helper (); // invoke helper as a function

};

myObject.double (); // invoke double as a method

document.writeln(myObject.getValue ());

This version works as expected.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 13 / 49

Functions Invocation

The constructor invocation pattern

JavaScript is a prototypal inhertance language. This means that an
object inherits properties directly from other objects. The language is
class-free.

Most languages today are class-based. JavaScript uses some syntax
borrowed from class-based languages to make programmers feel
more comfortable, but this is just confusing.

If a function is invoked with the new prefix, then a new object will be
created with a hidden link to the value of the function’s prototype

member, and this will be bound to that new object.

In addition, the new prefix changes the behavior of the return

statement.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 14 / 49

Functions Invocation

The constructor invocation pattern
// Create a constructor function call Quo.

// It makes an object with a status property.

var Quo = function (string) {

this.status = string;

};

// Give all instances of Quo a public method called get_status.

Quo.prototype.get_status = function () {

return this.status;

};

// Make an instance of Quo.

var myQuo = new Quo(’confused ’);

document.writeln(myQuo.get_status ()); // confused

Functions used with new are called constructors, and by convention
are kept in a variable with a capitalized name. If called without the new

prefix, bad things can happen without a warning or error.

Using this style of constructor functions is not recommended.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 15 / 49

Functions Invocation

The apply invocation pattern

JavaScript allows functions to have methods.

The apply method lets us construct an array of arguments to use to
invoke a function. It also lets us choose the value of this:
// Make an array of 2 numbers and add them.

var array = [3, 4];

var sum = add.apply(null , array); // sum is 7

// Make an object with a status member

var statusObject = {

status: ’A-OK’

};

// statusObject does not inherit from Quo.prototype , but we can

// invoke the get_status method on statusObject even though

// statusObject does not have a get_status method

var status = Que.prototype.get_status.apply(statusObject); // A-OK

The first argument to apply is bound to this, and the second is an
array of parameters.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 16 / 49

Functions Arguments

Arguments

arguments is a bonus parameter that all functions have available. It
contains the complete list of arguments supplied when the function
was invoked, including excess arguments that were not assigned to
parameters:
// note: the variable sum inside the function does not interfere

// with the sum defined outside the function. The function only

// sees the inner one.

var sum = function () {

var i, sum = 0;

for (i = 0; i < arguments.length; i += 1) {

sum += arguments[i];

}

return sum;

};

document.writeln(sum(4, 8, 15, 16, 23, 42)); // 108

JavaScript design error: arguments is an array-like object, but not
really an array. It has a length property, but it lacks all of the array
methods.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 17 / 49

Functions Return

Return

When a function is invoked, it begins execution with the first statement,
and ends when it hits the } that closes the function body. Then control
is returned to the part of the program that invoked the function.

The return statement causes the function to return early. When
return is executed, the function returns immediately without executing
the remaining statements.

A function always returns a value. If the return value is not specified,
then undefined is returned.

If the function is invoked with the new prefix and the return value is not
an object, then this (the new object) is returned instead.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 18 / 49

Functions Exceptions

Exceptions

JavaScript supports exceptions. An exception is an unusual mishap
that interferes with the normal flow of a program. When such a mishap
is detected, your program should throw an exception:

var add = function (a, b) {

if (typeof a !== ’number ’ || typeof b !== ’number ’) {

throw {

name: ’TypeError ’,

message: ’add needs numbers ’

};

}

return a + b;

};

The throw statement interrupts execution of the function. It should be
given an exception object containing a name property that identifies the
type of the exception and a descriptive message property. You can also
add other properties.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 19 / 49

Functions Exceptions

Exceptions

The exception object will be delivered to the catch clause of a try

statement:
// Make a try_it function that calls the new add

// function incorrectly

var try_it = function () {

try {

add(’seven’);

} catch (e) {

document.writeln(e.name + ’: ’ + e.message);

}

};

tryIt ();

If an exception is thrown within a try block, control will go to its catch

clause.

A try statement has a single catch block that will catch all exceptions.
You can use the name property to identify different exception types.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 20 / 49

Functions Augmenting Types

Augmenting types

We can augment the basic types of JavaScript by adding methods to
the right prototype objects. This works for:

I objects
I functions
I arrays
I strings
I numbers
I regular expressions
I booleans

In each case, modifying the global prototype object effectively modifies
every instance of that type, including instances that already exist.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 21 / 49

Functions Augmenting Types

Augmenting functions

We can add a function to Function.prototype, making a new method
available for all functions:

Function.prototype.method = function (name , func) {

this.prototype[name] = func;

return this;

};

Now all functions have a method called method that lets us avoid typing
the prototype property name.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 22 / 49

Functions Augmenting Types

Augmenting numbers

Getting just the integer part of a JavaScript number can be a bit
clumsy, so we can add a new method to numbers:

Number.method(’integer ’, function () {

return Math[this < 0 ? ’ceiling ’ : ’floor ’](this);

});

document.writeln ((-10 / 3). integer ()); // -3

This uses either Math.ceiling or Math.floor depending on whether
the value is positive or negative.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 23 / 49

Functions Augmenting Types

Augmenting strings

JavaScript lacks a method that removes spaces from the ends of a
string. This is an easy oversight to fix:

String.method(’trim’, function () {

return this.replace (/^\s+|\s+$/g, ’’);

});

document.writeln(’"’ + " neat ".trim() + ’"’);

trim uses a regular expression, which we will discuss later.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 24 / 49

Functions Augmenting Types

Defensive augmentation

Augmenting basic types can add significantly to the expressiveness of
the language. The prototype inheritance system means that all existing
values instantly gain the new functionality.

Because the prototypes of basic types are public structures, we must
be careful when mixing libraries. A defensive strategy is usually a good
idea:

// Add a method if it does not already exist

Function.prototype.method = function (name , func) {

if (!this.prototype[name]) {

this.prototype[name] = func;

}

};

Also, be careful to note that properties in the prototype chain show up
in for in loops. Use the hasOwnProperty method to screen out
inherited properties.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 25 / 49

Functions Recursion

Recursion

A recursive function is a function that calls itself, either directly or
indirectly. Recursion is a powerful programming technique in which a
problem is divided into a set of similar subproblems, each solved with a
simple solution. Generally, a recursive function calls itself to solve its
subproblems.

The Towers of Hanoi is a famous puzzle with a simple recursive
solution:

var hanoi = function hanoi(disc , src , aux , dst) {

if (disc > 0) {

hanoi(disc - 1, src , dst , aux);

document.writeln(’<pre >Move disc ’ + disc +

’ from ’ + src + ’ to ’ + dst + ’</pre >’);

hanoi(disc - 1, aux , src , dst);

}

}

hanoi(3, ’Src’, ’Aux’, ’Dst’);

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 26 / 49

Functions Recursion

Towers of Hanoi

This produces the following solution for three discs:
Move disc 1 from Src to Dst

Move disc 2 from Src to Aux

Move disc 1 from Dst to Aux

Move disc 3 from Src to Dst

Move disc 1 from Aux to Src

Move disc 2 from Aux to Dst

Move disc 1 from Src to Dst

It works by breaking the problem into three subproblems:

I First, it uncovers the bottom disc by moving the substack above it
to the auxiliary post.

I Next, it moves the bottom disc to the destination post.
I Finally, it moves the substack from the auxiliary post to the

destination post.

Moving a substack is a job for a recursive call.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 27 / 49

Functions Recursion

Recursive DOM functions

The browser’s DOM is a tree, and recursion is a natural tool for
manipulating trees:

var walk_the_DOM = function walk(node , func) {

func(node);

node = node.firstChild;

while (node) {

walk(node , func);

node = node.nextSibling;

}

};

This function visits every node of the tree in HTML source order,
starting from some given node. It invokes a function, passing it each
node in turn.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 28 / 49

Functions Recursion

Recursive DOM functions

An example of a function that uses walk_the_DOM to gather a list of
nodes containing a given attribute, optionally requiring a specific value
for that attribute:

var getElementsByAttribute = function (att , value) {

var results = [];

walk_the_DOM(document.body , function (node) {

var actual = node.nodeType === 1 && node.getAttribute(att);

if (typeof actual === ’string ’ &&

(actual === value || typeof value !== ’string ’)) {

results.push(node);

}

});

return results;

};

Note that we create the callback function as a function value, right
when it is needed. This is a common style in JavaScript programming.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 29 / 49

Functions Recursion

Tail recursion

Some languages offer tail call optimization. This means that if a
function returns the result of invoking another function as its final result
(including calling itself recursively),the invocation is replaced with a
loop, preventing the stack from growing unnecessarily. Unfortunately,
JavaScript does not currently offer this optimization:
var factorial = function factorial(i, a) {

a = a || 1;

if (i < 2) {

return a;

}

return factorial(i - 1, a * i);

};

document.writeln(factorial (4)); // 24

The recursive call is the last thing to happen in the function, but
JavaScript fails to notice it and apply an optimization. This means you
must be wary of stack growth in similar situations.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 30 / 49

Functions Scope

Scope

Scope controls the visibility and lifetimes of variables and parameters:
var foo = function () {

var a = 3, b = 5;

var bar = function () {

var b = 7, c = 11; // a = 3, b = 7, c = 11

a += b + c; // a = 21, b = 7, c = 11

};

// a = 3, b = 5, c is not defined

bar (); // a = 21, b = 5

};

JavaScript has function scope, but not block scope. Parameters and
variables defined in a function are not visible outside the function, and
a variable defined anywhere within a function is visible everywhere
within the function.

To avoid confusion with block scope languages, it may be a good idea
to declare all variables at the top of the function body.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 31 / 49

Functions Closure

Closures

One of the most important features of inner functions is that they have
access to the parameters and variables of the functions they are
defined within (with the exception of this and arguments).

getElementsByAttribute made use of this property to access the
results variable. The more interesting case is when the inner function
outlives the outer function:

var myObject = (function () {

var value = 0;

return {

increment: function (inc) {

value += typeof inc === ’number ’ ? inc : 1;

},

getValue: function () {

return value;

}

}

})();

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 32 / 49

Functions Closure

Closures

Private fields in C++ and Java can be simulated using this property:

// Create a maker function called quo. It makes an object

// with a get_status method and a private status property.

var quo = function (status) {

return {

get_status: function () {

return status;

}

};

};

// Make an instance of quo

var myQuo = quo(’amazed ’);

document.writeln(myQuo.get_status ());

The quo function is effectively a constructor, but is not used with the
new keyword, so it is not capitalized.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 33 / 49

Functions Closure

Closures

A function captures the environment in which it is defined. This is
called a lexical closure, or just a closure.

var fade = function (node) {

var level = 1;

var step = function () {

var hex = level.toString (16);

node.style.backgroundColor = ’#FFFF’ + hex + hex;

if (level < 15) {

level += 1;

setTimeout(step , 100);

}

};

setTimeout(step , 100);

};

fade(document.body);

setTimeout calls the given function after the given number of
milliseconds.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 34 / 49

Functions Closure

Bad example

The inner function has access to the actual variables of the outer
functions, not copies:

var add_the_handlers = function (nodes) {

var i;

for(i = 0; i < nodes.length; i += 1) {

nodes[i]. onclick = function (e) {

alert(i);

}

}

};

This function is assigns an event handler function to an array of nodes.
When you click on a node, an alert box is supposed to display the
ordinal of the node.

Instead, it always displays the total number of nodes. What went
wrong?

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 35 / 49

Functions Closure

Fixed example

This version fixes the problem:

var add_the_handlers = function (nodes) {

var i;

for(i = 0; i < nodes.length; i += 1) {

nodes[i]. onclick = function (i) {

return function (e) {

alert(i);

};

}(i);

}

};

We create a new function each time and immediately invoke it, creating
a new i variable that hides the old one from the handler function.

Be careful: this is an easy mistake to make.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 36 / 49

Functions Callbacks

Callbacks

Functions make it easier to deal with discontinous events. Suppose
you start with a user interaction, contact the server, then display the
server’s response:
request = prepare_the_request ();

response = send_request_synchronously(request);

display(response);

This approach will freeze the client while waiting for the network and
the server. A better approach:
request = prepare_the_request ();

send_request_asynchronously(request , function (response) {

display(response);

});

By passing a function parameter and making the call asynchronously,
the client can continue as normal while waiting for the response. The
function will be invoked when the response is ready.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 37 / 49

Functions Module

Modules

A module is a function or object that presents an interface by hides its
state and implementation. We can use functions and closures to create
them. This technique can eliminate many uses of global variables.

Consider a deentityify method for strings. Its job is remove HTML
entities in a string and replace them with their equivalent characters,
e.g., converting ’"’ to ’"’. An object mapping entity names to
characters would be useful, but where to put it?

I keep it in a global variable: yuck
I define it in the function itself: runtime overhead because the

object literal must be evaluated every time the function is called
I hidden in a closure: now we’re talking

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 38 / 49

Functions Module

Modules
String.method(’deentityify ’, function () {

// The table of entity names and characters

var entity = { ’quot’: ’"’, lt: ’<’, gt: ’>’ };

// Return the deentityify method

return function () {

// This is the deentityify method. It searches for

// substrings that start with ’&’ and end with ’;’. If the

// characters in between are in the entity table , then

// replace the entity with the character from the table. It

// uses a regular expression (covered later).

return this.replace (/&([^&;]+);/g,

function (a, b) {

var r = entity[b];

return typeof r === ’string ’ ? r : a;

}

);

};

}());

Note the last line. The first function returns the actual method.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 39 / 49

Functions Module

Modules

We can now use this method:

document.writeln(’<">’.deentityify ()); // <">

The module pattern uses closures and scoping rules to hide the entity
object. It is created only once, but only the method can access it.

The general pattern is:

I Create a function that
I defines private variables and functions;
I creates privileged functions, which, through closure will have

access to the private variables and functions; and that
I returns the privileged functions or stores them in an accessible

place.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 40 / 49

Functions Module

Modules as secure objects

Say we want to generate serial numbers:

var serial_maker = function () {

var prefix = ’’;

var seq = 0;

return {

set_prefix: function (p) {

prefix = String(p);

},

set_seq: function (s) {

seq = s;

},

gensym: function () {

var result = prefix + seq;

seq += 1;

return result;

}

};

}

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 41 / 49

Functions Module

Modules as secure objects

The serial numbers have a prefix and a unique number. Because the
methods do not make use of this, there is no way to compromise the
sequence, except through the defined interface, i.e., no fancy use of
the apply invocation pattern:

var seqer = serial_maker ();

seqer.set_prefix(’Q’);

seqer.set_seq (1000);

var unique = seqer.gensym (); // unique is "Q1000"

The methods themselves could be replaced, but that would still not
permit access to prefix and seq except through the interface.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 42 / 49

Functions Cascade

Cascade

Some methods do not have a return value. If we have them return
this instead of undefined, we can cascade method calls:
getElement(’myBoxDiv ’).

move (350, 150).

width (100).

height (100).

color(’red’).

border(’10px outset ’).

padding(’4px’).

appendText(’Please stand by’).

on(’mousedown ’, function (m) {

this.startDrag(m, this.getNinth(m));

}).

on(’mousemove ’, ’drag’).

on(’mouseup ’, ’stopDrag ’).

tip(’This box is resizeable ’);

In this example, each of the methods returns the object, so we can
immediately call another method in a chain. jQuery makes extensive
use of this trick.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 43 / 49

Functions Curry

Curry

Functions are values. Currying allows us to produce a new function
by combining a function and an argument:

var add1 = add.curry (1);

document.writeln(add1 (6)); // 7

add1 is a function that is the same as add only with one argument
already provided. We can write the curry function to make this
possible:

Function.method(’curry’, function () {

var args = arguments , that = this;

return function () {

return that.apply(null , args.concat(arguments));

};

}); // Something isn’t right

Unfortunately, the arguments array is not actually an array, so it does
not have the concat method.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 44 / 49

Functions Curry

Curry

To work around the lack of a concat method for the argument list, we
apply the array slice method on both of the argument arrays. This
produces real arrays that behave correctly with the concat method:

Function.method(’curry’, function () {

var slice = Array.prototype.slice ,

args = slice.apply(arguments),

that = this;

return function () {

return that.apply(null ,

args.concat(slice.apply(arguments)));

};

});

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 45 / 49

Functions Memoization

Memoization

Functions can use objects to remember the results of previous
operations, making it possible to avoid unnecessary work. This is
called memoization:

var fibonacci = function (n) {

return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);

};

for (var i = 0; i <= 10; i += 1) {

document.writeln(’// ’ + i + ’: ’ + fibonacci(n));

}

This code works, but it does a log of unnecessary work. The
fibonacci function is called 453 times: 11 times by us, 442 times in
recursive calls, most of which are duplicating work.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 46 / 49

Functions Memoization

Memoization

We can keep our memoized results in a memo array that we can hide in
a closure. When our function is called, it first looks to see if it already
knows the result. If so, it can return it immediately:
var fibonacci = function () {

var memo = [0, 1];

var fib = function (n) {

var result = memo[n];

if (typeof result !== ’number ’) {

result = fib(n - 1) + fib(n - 2);

memo[n] = result;

}

return result;

};

return fib;

}();

This version gives the same results, but fibonacci is only called 29
times: 11 times by us and 18 times to obtain the previously memoized
results.
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 47 / 49

Functions Memoization

Memoization

We can generalize this:

var memoizer = function (memo , fundamental) {

var shell = function (n) {

var result = memo[n];

if (typeof result !== ’number ’) {

result = fundamental(shell , n);

memo[n] = result;

}

return result;

};

return shell;

};

The initial memo array and the “real” function are passed is as
parameters. The code manages the memo array and only calls the
fundamental function when a result is absent from the array.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 48 / 49

Functions Memoization

Memoization

We can define fibonacci with the memoizer by providing it with the
initial memo array and the fundamental function:

var fibonacci = memoizer ([0, 1], function (shell , n) {

return shell(n - 1) + shell(n - 2);

});

By writing functions that produce other functions, we can reduce the
amount of work we need to do. For example, to produce a memoizer
factorial function, we only need to supply the basic factorial formula:

var factorial = memoizer ([1, 1], function (shell , n) {

return n * shell(n - 1);

});

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 49 / 49

	Functions
	Function Objects
	Function Literal
	Invocation
	Arguments
	Return
	Exceptions
	Augmenting Types
	Recursion
	Scope
	Closure
	Callbacks
	Module
	Cascade
	Curry
	Memoization

