
Interactive Web Development
Objects

Dr Russ Ross

Dixie State University—Computer and Information Technologies

Spring 2016

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 1 / 18

Objects

Objects

Reading: JavaScript: The Good Parts, Chapter 3

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 2 / 18

Objects

Objects

The simple types of JavaScript are:

▶ numbers
▶ strings
▶ booleans (true and false)
▶ null

▶ undefined

The three types marked in bold are are object-like; they have methods,
but they are immutable. These types are all true objects:

▶ arrays
▶ functions
▶ regular expressions
▶ objects

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 3 / 18

Objects

Objects

An object is a container of properties:

▶ a property has a name and a value
▶ a property name can be any string, including the empty string
▶ a property value can be any JavaScript value except undefined
▶ there is no constraint on the names of new properties
▶ there is no constraint on the values of properties
▶ objects can contain other objects, making it easy to represent tree

and graph structures
▶ objects are useful for collecting and organizing data

Objects are class-free. They have a prototype linkage feature that
allows one object to inherit the properties of another. When done right,
this makes object initializion quick and reduces memory consumption.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 4 / 18

Objects Object Literals

Object literals

Object literals are a convenient notation for creating new object
values:

var empty_object = {};

var stooge = {

"first -name": "Jerome",

"last -name": "Howard"

};

An object literal is a pair of curly braces surrounding zero or more
name/value pairs. It can appear anywhere an expression can appear.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 5 / 18

Objects Object Literals

Object literals

Commas separate the pairs. A property’s value can come from any
expression, including another object literal. Objects can nest:

var flight = {

airline: "Oceanic",

number: 815,

departure: {

IATA: "SYD",

time: "2004 -09 -22 14:55",

city: "Sydney"

},

arrival: {

IATA: "LAX",

time: "2004 -09 -23 10:42",

city: "Los Angeles"

}

};

Quotes are optional for property names that are legal JavaScript
names and not reserved words, e.g., first_name vs. "first-name".
Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 6 / 18

Objects Retrieval

Retrieval

Values can be retrieved from an object by wrapping a string expressing
in a [] suffix:

stooge["first -name"] // "Joe"

flight.departure.IATA // "SYD"

If the string expression is a constant, and it is a legal JavaScript name
and is not a reserved word, then you can use the . notation instead.
This is more compact and easier to read.

The undefined value is produced when you attempt to retrieve a
nonexistent member:

stooge["middle -name"] // undefined

flight.status // undefined

stooge["FIRST -NAME"] // undefined

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 7 / 18

Objects Retrieval

Retrieval

The || operator can be used to fill in default values:

var middle = stooge["middle -name"] || "(none)";

var status = flight.status || "unknown";

Attempting to retrieve values from undefined will throw a TypeError

exception. The && operator can guard against this:

flight.equipment // undefined

flight.equipment.model // throw "TypeError"

flight.equipment && flight.equipment.model // undefined

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 8 / 18

Objects Update

Update

A value in an object can be updated by assignment. If the property
name already exists in the object, the property value is replaced:

stooge[’first -name’] = ’Jerome ’;

If the object does not already have that property name, the object is
augmented:

stooge[’middle -name’] = ’Lester ’;

stooge.nickname = ’Curly’;

flight.equipment = {

model: ’Boeing 777’

};

flight.status = ’overdue ’;

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 9 / 18

Objects Reference

Reference

Objects are passed by reference. They are never copied:

var x = stooge;

x.nickname = ’Curly’;

var nick = stooge.nickname;

// nick is ’Curly ’ because x and stooge

// are references to the same object

var a = {}, b = {}, c = {};

// a, b, and c each refer to a

// difference empty object

a = b = c = {};

// a, b, and c all refer to

// the same empty object

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 10 / 18

Objects Prototype

Prototype

Every object is linked to a prototype object from which it can inherit
properties. All objects created from object literals are linked to
Object.prototype, an object that comes standard with JavaScript.

The mechanism to link a new object to a specific prototype is messy.
The following code simplifies it:

if (typeof Object.beget !== ’function ’) {

Object.beget = function (o) {

var F = function () {};

F.prototype = o;

return new F();

};

}

With that, you can use:

var another_stooge = Object.beget(stooge);

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 11 / 18

Objects Prototype

Prototype

The prototype link has no effect on updating:

another_stooge[’first -name’] = ’Harry’;

another_stooge[’middle -name’] = ’Moses’;

another_stooge.nickname = ’Moe’;

Changes to an object do not change the prototype object. Updates to
the prototype object are immediately reflected in the objects linked to
that prototype:

stooge.profession = ’actor’;

another_stooge.profession // ’actor ’

When you try to retrieve a property, the object is first searched. If the
property is missing, the prototype object is search, and so on,
eventually ending with Object.prototype. This process is called
delegation. If the property is not found, the result is undefined.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 12 / 18

Objects Reflection

Reflection

It is easy to inspect an object to determine what properties it has by
attempting to retrieve the properties and examining the values
obtained:

typeof flight.number // ’number ’

typeof flight.status // ’string ’

typeof flight.arrival // ’object ’

typeof flight.manifest // ’undefined ’

The typeof operator is very useful for this task.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 13 / 18

Objects Reflection

Reflection

Any property on the prototype chain can produce a value:

typeof flight.toString // ’function ’

typeof flight.constructor // ’function ’

One solution is to ignore all functions. When reflecting, you are usually
looking for data.

You can also use the hasOwnProperty method:

flight.hasOwnProperty(’number ’) // true

flight.hasOwnProperty(’constructor ’) // false

It returns true if the object has a particular property. hasOwnProperty
does not look at the prototype chain.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 14 / 18

Objects Enumeration

Enumeration

The for in statement can loop over all of the property names in an
object. All properties will be included; functions and prototype
properties that you may not be interested in will be part of the
enumeration. Normally, you should filter these out:

var name;

for (name in another_stooge) {

if (typeof another_stooge[name] !== ’function ’) {

document.writeln(name + ’: ’ + another_stooge[name]);

}

}

Using hasOwnProperty is also commonly used to filter out undesirable
properties.

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 15 / 18

Objects Enumeration

Enumeration

The order in which properties are enumerated with for in is not
guaranteed. In particular, it is unlikely to match the order in which the
properties were created.

If you need properties to appear in a certain order, for in may not be
the right tool:

var i;

var properties = [

’first -name’,

’middle -name’,

’last -name’,

’profession ’

];

for (i = 0; i < properties.length; i += 1) {

document.writeln(properties[i] + ’: ’ +

another_stooge[properties[i]]);

}

}

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 16 / 18

Objects Delete

Delete

The delete operator can be used to remove a property from an object:

▶ it will remove a property from the object if it has one
▶ it will not touch the prototype chain
▶ removing a property may allow a property from the prototype

linkage to show through

another_stooge.nickname // ’Moe’

// Remove nickname from another_stooge , revealing

// the nickname of the prototype

delete another_stooge.nickname;

another_stooge.nickname // ’Curly’

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 17 / 18

Objects Global Abatement

Global abatement

It is easy to create and use global variables in JavaScript. All global
variables are actually properties of the window object, and overusing
this can make your programs fragile.

One way to minimize the danger is to create a single global variable for
your application:
var MYAPP = {};

Then you can use that variable as a container for your application:
MYAPP.stooge = {

"first -name": "Joe",

"last -name": "Howard"

};

MYAPP.flight = {

airline: "Oceanic",

// ...

};

Dr Russ Ross (Dixie State University) CS/WEB 4010 Spring 2016 18 / 18

	Objects
	Object Literals
	Retrieval
	Update
	Reference
	Prototype
	Reflection
	Enumeration
	Delete
	Global Abatement

