Computational Theory

Finite Automata and Regular Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2023

Adapted from notes by Russ Ross Adapted from notes by Harry Lewis

Finite Automata

Reading: Sipser §1.1 and §1.2.

Deterministic Finite Automata (DFAs)

Example: Home Stereo

- ightharpoonup P = power button (ON/OFF)
- S = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode
- ▶ A computational problem: does a given sequence of button presses $w \in \{P, S\}^*$ leave the system with the radio on?

Formal Definition of a DFA

- ▶ A DFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$
 - Q: Finite set of states
 - Σ : Alphabet
 - δ : Transition function, $Q \times \Sigma \to Q$
 - q_0 : Start state, $q_0 \in Q$
 - F: Accept (or final) states, $F \subseteq Q$
- If $\delta(p,\sigma)=q$, then if M is in state p and reads symbol $\sigma\in\Sigma$ then M enters state q (while moving to next input symbol)
- ► Home Stereo example: (in class exercise, define $M = (Q, \Sigma, \delta, q_0, F)$, then draw state machine representation.)

Another Visualization

Finite-state control changes state depending on:

- current state
- next symbol

Accepting Strings

M accepts string X if

- ► After starting *M* in the start (initial) state with head on first square,
- when all of X has been read,
- M winds up in a final state.

Examples

▶ Bounded Counting: A DFA for

 $\{x|x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s}\}$

Transition function δ :

$$\begin{array}{c|cccc} & a & b \\ \hline q_0 & q_1 & q_2 \\ q_1 & q_0 & q_3 \\ q_2 & q_3 & q_0 \\ q_3 & q_2 & q_1 \end{array}$$

i.e.
$$\delta(q_0, a) = q_1$$
, etc.

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{a, b\}$ $F = \{q_2\}$

Another Example, to work out together

▶ **Pattern Recognition**: A DFA that accepts $\{x|x \text{ has } aab \text{ as a substring}\}.$

Formal Definition of Computation

 $M=(Q,\Sigma,\delta,q_0,F)$ accepts $w=w_1w_2\cdots w_n\in\Sigma^*$ (where each $w_i\in\Sigma$) if there exist $r_0,\ldots,r_n\in Q$ such that

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1 and
- 3. $r_n \in F$.

The **language recognized** (or **accepted**) by M, denoted L(M), is the set of all strings accepted by M.

Definition of Regular Languages

Definition 1.16 A language is called a *regular language* if some finite automaton recognizes it.

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- ▶ Inductively define $\delta^*: Q \times \Sigma^* \to Q$ by $\delta^*(q, \varepsilon) = q$, $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$.
- Intuitively, $\delta^*(q, w) =$ "state reached after starting in q and reading the **string** w."
- ▶ M accepts w if $\delta^*(q_0, w) \in F$.

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- ▶ Inductively define $\delta^*: Q \times \Sigma^* \to Q$ by $\delta^*(q, \varepsilon) = q$, $\delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma)$.
- Intuitively, $\delta^*(q, w) =$ "state reached after starting in q and reading the **string** w."
- ▶ M accepts w if $\delta^*(q_0, w) \in F$.

Determinism: Given M and w, the states r_0, \ldots, r_n are uniquely determined. Or in other words, $\delta^*(q, w)$ is well defined for any q and w: There is precisely one state to which w "drives" M if it is started in a given state.

The impulse for nondeterminism

A language for which it is hard to design a DFA:

$$\{x_1x_2\cdots x_k|k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}$$

But it is easy to imagine a "device" to accept this language if there sometimes can be several possible transitions!

Nondeterministic Finite Automata

An **NFA** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- $\triangleright Q, \Sigma, q_0, F$ are as for DFAs

When in state p reading symbol σ , can go to **any** state q in the **set** $\delta(p,\sigma)$.

- \blacktriangleright there may be more than one such q, or
- ▶ there may be none (in case $\delta(p, \sigma) = \emptyset$).

Can "jump" from p to any state in $\delta(p,\varepsilon)$ without moving the input head.

Computations by an NFA

 $N=(Q,\Sigma,\delta,q_0,F)$ accepts $w\in \Sigma^*$ if we can write $w=y_1y_2\dots y_m$ where each $y_i\in \Sigma\cup \{\varepsilon\}$ and there exist $r_0,\dots,r_m\in Q$ such that

- 1. $r_0 = q_0$,
- **2.** $r_{i+1} \in \delta(r_i, y_{i+1})$ for each i = 0, ..., m-1, and
- 3. $r_m \in F$.

Nondeterminism: Given N and w, the states r_0, \ldots, r_m are not necessarily determined.

Example of an NFA

$$N = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\}),$$
 where δ is given by:

	a	b	ε
q_0	$\{q_1\}$	Ø	Ø
q_1	$\{q_2\}$	Ø	Ø
q_2	$\{q_0\}$	$\{q_0, q_3\}$	Ø
q_3	$\{q_0\}$	Ø	Ø

Work out the tree of all possible computations on aabaab

How to simulate NFAs?

- ▶ NFA accepts w if there is at least one accepting computational path on input w.
- ▶ But the number of paths may grow exponentially with the length of *w*!
- Can exponential search be avoided?

NFAs and DFAs Closure Properties

Reading: Sipser §1.2.

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem 1.39: For every NFA N, there exists a DFA M such that L(M) = L(N).

Proof Outline: Given any NFA N, to construct a DFA M such that L(M) = L(N):

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?

Theorem 1.39: For every NFA N, there exists a DFA M such that L(M) = L(N).

Proof Outline: Given any NFA N, to construct a DFA M such that L(M) = L(N):

- ► Have the DFA keep track, at all times, of all possible states the NFA could be in after reading the same initial part of the input string.
- ▶ I.e., the **states** of M are **sets** of states of N, and $\delta_M^*(R, w)$ is the set of all states N could reach after reading w, starting from a state in R.

Example of the SUBSET CONSTRUCTION

NFA N for $\{x_1x_2\cdots x_k|k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$

N starts in state 0 so we will construct a DFA M starting in state $\{0\}$.

Example of the SUBSET CONSTRUCTION

NFA N for $\{x_1x_2\cdots x_k|k\geq 0 \text{ and each } x_i\in \{aab,aaba,aaa\}\}.$

N starts in state 0 so we will construct a DFA M starting in state $\{0\}$. Here it is:

All other transitions are to the "dead state" \emptyset . The other states are unreachable, though technically must be defined. Final states are all those containing 0, the final state of N.

Formal Construction of DFA M from

NFA
$$N = (Q, \Sigma, \delta, q_0, F)$$

On the assumption that $\delta(p,\varepsilon)=\emptyset$ for all states p. (i.e., we assume no ε -transitions, just to simplify things a bit)

$$M=(Q',\Sigma,\delta',q_0',F')$$
 where

$$\begin{array}{rcl} Q' &=& \mathcal{P}(Q) \\ q'_0 &=& \{q_0\} \\ F' &=& \{R\subseteq Q|R\cap F\neq\emptyset\} \text{ (that is, } R\in Q') \\ \delta'(R,\sigma) &=& \{q\in Q|q\in\delta(r,\sigma) \text{ for some } r\in R\} \\ &=& \bigcup_{r\in R} \delta(r,\sigma) \end{array}$$

Proving that the construction works

Claim: For every string w, running M on input w ends in the state $\{q \in Q | \text{ some computation of } N \text{ on input } w \text{ ends in state } q\}$.

Pf: By induction on |w|.

Can be extended to work even for NFAs with ε -transitions.

"THE SUBSET CONSTRUCTION"

Closure Properties

Theorem: The class of regular languages is closed under:

- ▶ (1.25/1.45) Union: $L_1 \cup L_2$
- ▶ (1.26/1.47) Concatenation: $L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- ▶ (1.49) Kleene *: $L_1^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$
- ▶ (P1.14) Complement: $\overline{L_1}$
- ▶ (1.26) Intersection: $L_1 \cap L_2$

Closure Properties

Theorem: The class of regular languages is closed under:

- ▶ (1.25/1.45) Union: $L_1 \cup L_2$
- ▶ (1.26/1.47) Concatenation: $L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- ▶ (1.49) Kleene *: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$
- \blacktriangleright (P1.14) Complement: $\overline{L_1}$
- ▶ (1.26) Intersection: $L_1 \cap L_2$

Union: If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Closure Properties

Theorem: The class of regular languages is closed under:

- ▶ (1.25/1.45) Union: $L_1 \cup L_2$
- ▶ (1.26/1.47) Concatenation: $L_1 \circ L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$
- ▶ (1.49) Kleene *: $L_1^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L_1\}$
- \blacktriangleright (P1.14) Complement: $\overline{L_1}$
- ▶ (1.26) Intersection: $L_1 \cap L_2$

Union: If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

M has the states and transitions of M_1 and M_2 plus a new start state ε -transitioning to the old start states.

Concatenation, Kleene*, Complementation

Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

Kleene*:

$$L(M) = L(M_1)^*$$

Complement:

$$L(M) = \overline{L(M_1)}$$

Concatenation, Kleene*, Complementation

Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

Kleene*:

$$L(M) = L(M_1)^*$$

Complement:

$$L(M) = \overline{L(M_1)}$$

Concatenation, Kleene*, Complementation

Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

Kleene*:

$$L(M) = L(M_1)^*$$

Complement:

$$L(M) = \overline{L(M_1)}$$

M

Concatenation, Kleene*, Complementation

 M_1

0

 M_2

 \bigcirc

 \bigcirc

Concatenation:

$$L(M) = L(M_1) \circ L(M_2)$$

M_1

Kleene*:

$$\mathcal{L}(M) = \mathcal{L}(M_1)^*$$

Complement: $L(M) = \overline{L(M_1)}$

 Assume M is deterministic (or make it so)

Invert final/ nonfinal states

Closure under intersection

Intersection: $S \cap T = \overline{\overline{S} \cup \overline{T}}$

$$=\overline{S}$$

$$=\overline{T}$$

Hence closure under union and complement implies closure under intersection.

A more constructive and direct proof of closure under intersection

Better way ("Cross Product Construction"):

From DFAs $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, construct $M=(Q,\Sigma,\delta,q_0,F)$:

$$Q = Q_1 \times Q_2$$

$$F = F_1 \times F_2$$

$$\delta(\langle r_1, r_2 \rangle, \sigma) = \langle \delta_1(r_1, \sigma), \delta_2(r_2, \sigma) \rangle$$

$$q_0 = \langle q_1, q_2 \rangle$$

Then $L(M_1) \cap L(M_2) = L(M)$

Some Efficiency Considerations

The subset construction shows that any n-state NFA can be implemented as a 2^n -state DFA.

NFA States	DFA States
4	16
10	1024
100	2^{100}
1000	$2^{1000} \gg$ the number of particles in the universe

How to implement this construction on an ordinary digital computer?

NFA states
$$1, \ldots, n$$

DFA state bit vector $0 1 1 0 \cdots 1$

Is this construction the best we can do?

Could there be a construction that always produces an n^2 state DFA for example?

Theorem: For every $n \ge 1$, there is a language L_n such that

- 1. There is an (n+1)-state NFA recognizing L_n .
- 2. There is no DFA recognizing L_n with fewer than 2^n states.

Conclusion: For finite automata, nondeterminism provides an **exponential savings** over determinism (in the worst case).

Proving that exponential blowup is sometimes unavoidable

(Could there be a construction that always produces a 2^n state DFA for example?)

Consider (for some fixed n = 17, say)

$$L_n = \{w \in \{a, b\}^* : \text{ the } n \text{th symbol from the right end of } w \text{ is an } a\}$$

- ▶ There is an (n+1)-state NFA that accepts L_n .
- ▶ There is no DFA that accepts L_n and has $< 2^n$ states

A "Fooling Argument"

- ▶ Suppose a DFA M has $< 2^n$ states, and $L(M) = L_n$
- ▶ There are 2^n strings of length n.
- ▶ By the pigeonhole principle, two such strings $x \neq y$ must drive M to the same state q.
- Suppose x and y differ at the k^{th} position from the right end (one has a, the other has b) (k = 1, 2, ..., or n)
- ▶ Then M must treat xa^{n-k} and ya^{n-k} identically (accept both or reject both). These strings differ at position n from the right end.
- ▶ So $L(M) \neq L_n$, contradiction. QED.

Illustration of the fooling argument

- x and y are different strings (so there is a position k where one has a and the other has b)
- ightharpoonup But both strings drive M from s to the same state q

What the argument proves

- ► This shows that the subset construction is within a factor of 2 of being optimal
- In fact it is optimal, i.e., as good as we can do in the worst case
- In many cases, the "generate-states-as-needed" method yields a DFA with $\ll 2^n$ states

(e.g. if the NFA was deterministic to begin with!)

Regular Expressions

Reading: Sipser §1.3.

Regular Expressions

- Let $\Sigma = \{a, b\}$. The **regular expressions** over Σ are certain expressions formed using the symbols $\{a, b, (,), \varepsilon, \emptyset, \cup, \circ, *\}$
- We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).
- Construction Rules (= inductive/recursive definition):
 - 1. $a, b, \varepsilon, \emptyset$ are regular expressions
 - 2. If R_1 and R_2 are RE's, then so are $(R_1 \circ R_2)$, $(R_1 \cup R_2)$, and (R_1^*) .
- Examples:
 - $ightharpoonup (a \circ b)$
 - $((((a \circ (b^*)) \circ c) \cup ((b^*) \circ a))^*)$
 - **▶** (∅*)

What REs Do

Regular expressions (which are strings) represent languages (which are sets of strings), via the function L:

(1)
$$L(a) = \{a\}$$

(2) $L(b) = \{b\}$
(3) $L(\varepsilon) = \{\varepsilon\}$
(4) $L(\emptyset) = \emptyset$
(5) $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
(6) $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
(7) $L((R_1^*)) = L(R_1)^*$

Example:

$$L(((a^*) \circ (b^*))) = \{a\}^* \circ \{b\}^*$$

 $ightharpoonup L(\cdot)$ is called the **semantics** of the expression.

Syntactic Shorthand

- Drop the distinction between red and black, between object language and metalanguage
- Omit o symbol and many parentheses
- Union and concatenation of languages are associative

i.e., for any languages L_1, L_2, L_3 :

$$(L_1L_2)L_3 = L_1(L_2L_3)$$
 and $(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$

so we can write just $R_1R_2R_3$ and $R_1 \cup R_2 \cup R_3$

For example, the following are all equivalent:

$$((ab)c)$$
 $(a(bc))$ abc

Equivalent means "same semantics, maybe different syntax"

More syntactic sugar

▶ By convention, * takes precedence over o, which takes precedence over U.

So $a \cup bc^*$ is equivalent to $(a \cup (b \circ (c^*)))$

 $ightharpoonup \Sigma$ is shorthand for $a \cup b$ (or the analogous RE for whatever alphabet is in use).

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's =
$$(b \cup ab^*a)^*$$

= $b^*(ab^*ab^*)^*$

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's = $(b \cup ab^*a)^*$ = $b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's = $(b \cup ab^*a)^*$ = $b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings of form $x_1x_2...x_k, k \ge 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's = $(b \cup ab^*a)^*$ = $b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings of form $x_1x_2...x_k, k \ge 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Decimal numerals, no leading zeros

$$= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$$

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's = $(b \cup ab^*a)^*$ $= b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings of form $x_1x_2...x_k, k \ge 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Decimal numerals, no leading zeros

$$= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$$

All strings with an even # of a's and an even # of b's

$$= (b \cup ab^*a)^* \cap (a \cup ba^*b)^*$$

 $=(b \cup ab^*a)^* \cap (a \cup ba^*b)^*$ but this isn't a regular expression

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's $= (b \cup ab^*a)^*$ $= b^*(ab^*ab^*)^*$

Strings with \leq two a's = ?

Strings of form $x_1x_2...x_k, k \ge 0$, each $x_i \in \{aab, aaba, aaa\} = ?$

Decimal numerals, no leading zeros

$$= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$$

All strings with an even # of a's and an even # of b's

$$=(b \cup ab^*a)^* \cap (a \cup ba^*b)^*$$
 but this isn't a regular expression

 $= (aa \cup bb)^*((ab \cup ba)(aa \cup bb)^*(ab \cup ba)(aa \cup bb)^*)^*$

Equivalence of REs and FAs

Recall: we call a language **regular** if there is a finite automaton that recognizes it.

Theorem: For every regular expression R, L(R) is regular.

Proof (going back to hyper-formality for a moment):

Induct on the construction of regular expressions ("structural induction").

Base Case: R is a, b, ε , or \emptyset

$$\times \longrightarrow \sigma \longrightarrow \otimes \times \otimes$$
 accepts $\{\sigma\}$ accepts \emptyset accepts $\{\varepsilon\}$

Equivalence of REs and FAs, continued

Inductive Step: If R_1 and R_2 are REs and $L(R_1)$ and $L(R_2)$ are regular (inductive hyp.), then so are:

$$L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$$

 $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
 $L((R_1^*)) = L(R_1)^*$

(By the closure properties of the regular languages).

Proof is **constructive** (actually produces the equivalent NFA, not just proves its existence).

Example conversion of a RE to a FA

$$(a \cup \varepsilon)(aa \cup bb)^*$$

The Other Direction

Theorem: For every regular language L, there is a regular expression R such that L(R) = L.

Proof:

Define **generalized NFAs** (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- ▶ One start state q_{start} and only one accept state q_{accept} .
- Exactly one transition from q_i to q_j for every two states $q_i \neq q_{\sf accept}$ and $q_j \neq q_{\sf start}$ (including self-loops).

Steps toward the proof

Lemma: For every NFA N, there is an equivalent GNFA G.

- Add new start state, new accept state. Transitions?
- If multiple transitions between two states, combine. How?
- If no transition between two states, add one. With what transition?

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- ▶ Base case: k = 2. Set R to be the label of the transition from q_{start} to q_{accept} .

Ripping and repairing GNFAs to reduce the number of states

- ▶ Inductive Hypothesis: Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \ge 2$).
- ▶ **Induction Step:** Given a (k + 1)-state GNFA G, we will construct an equivalent k-state GNFA G'.

Rip: Remove a state q_r (other than q_{start} , q_{accept}).

Repair: For every two states $q_i \notin \{q_{\text{accept}}, q_r\}, q_j \notin \{q_{\text{start}}, q_r\},$ let $R_{i,j}, R_{i,r}, R_{r,r}, R_{r,j}$ be REs on transitions $q_i \to q_j, q_i \to q_r, q_r \to q_r$ and $q_r \to q_j$ in G, respectively,

In G', put RE $R_{i,j} \cup R_{i,r}R_{r,r}^*R_{r,j}$ on transition $q_i \to q_j$.

Argue that L(G') = L(G), which is regular by IH.

Also constructive.

Example conversion of an NFA to a RE

An NFA accepting strings with an even number of a's with $\Sigma = \{a, b\}$.

Non-Regular Languages

Reading: Sipser, §1.4.

Goal: Explicit Non-Regular Languages

It appears that a language such as

```
L = \{x \in \Sigma^* : |x| = 2^n \text{ for some } n \ge 0\}
= \{a, b, aa, ab, ba, bb, aaaa, \ldots, bbbb, aaaaaaaa, \ldots\}
```

can't be regular because the "gaps" in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn't a proof!

Approach:

- 1. Prove some general property P of all regular languages.
- 2. Show that L does **not** have P.

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the **pumping length**) such that

every string $s\in L$ of length at least p can be divided into s=xyz, where $y\neq \varepsilon$ and for every $n\geq 0, xy^nz\in L$.

$$n=1$$
 x y z
 $n=0$ x z
 $n=2$ x y y z

. . .

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the **pumping length**) such that

every string $s \in L$ of length at least p can be divided into s = xyz, where $y \neq \varepsilon$ and for every $n \geq 0, xy^nz \in L$.

. .

- Why is the part about p needed?
- ▶ Why is the part about $y \neq \varepsilon$ needed?

Proof of Pumping Lemma

(Another fooling argument)

- ▶ Since L is regular, there is a DFA M accepting L.
- Let p = # states in M.
- Suppose $s \in L$ has length $l \geq p$.
- ▶ M passed through a sequence of l+1>p states while accepting s (including the first and last states): say, q_0, \ldots, q_l .
- lacktriangle Two of these states must be the same: say, $q_i = q_j$ where i < j

Pumping, continued

▶ Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

- ▶ If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- ▶ So since $xyz \in L$, then $xy^nz \in L$ for all n.

Pumping, continued

▶ Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

- ▶ If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- ▶ So since $xyz \in L$, then $xy^nz \in L$ for all n.

Proof also shows:

- ▶ We can take p = # states in smallest DFA recognizing L.
- ▶ Can guarantee division s = xyz satisfies $|xy| \le p$ (or $|yz| \le p$).

Pumping Lemma Example

Consider

 $L = \{x : x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s}\}$

- Since L is regular, pumping lemma holds. (i.e., every sufficiently long string s in L is "pumpable")
- ightharpoonup For example, if s=aab, we can write $x=\varepsilon$, y=aa, and z=b.

Pumping the even a's, odd b's language

Claim: L satisfies pumping lemma with pumping length p=4.

Proof:

Pumping the even a's, odd b's language

Claim: L satisfies pumping lemma with pumping length p=4.

Proof:

Consider any string s of length at least 4, and write s=tu where $\vert t \vert =4$

- ► Case 1: t has an even number of a's and an even number of b's. Then we can set $x = \varepsilon$, y = t, z = u.
- ▶ Case 2: t has 3 a's and 1 b. Then we can set y = aa.
- ▶ Case 3: t has 3 b's and 1 a. Then we can set y = bb.
- ▶ So L satisfies the pumping lemma with pumping length p = 4.

Q: Can the Pumping Lemma be used to prove that L is regular? That is, does "Pumpable" \Rightarrow Regular?

Use PL to Show Languages are NOT Regular

Claim: $L = \{a^nb^n : n \ge 0\} = \{\varepsilon, ab, aabb, aaabb, ...\}$ is not regular.

Proof by contradiction:

- Suppose that L is regular.
- So L has some pumping length p > 0.
- ► Consider the string $s = a^p b^p$. Since |s| = 2p > p, we can write s = xyz for some strings x, y, z as specified by the lemma.
- ▶ Claim: No matter how s is partitioned into xyz with $y \neq \varepsilon$, we have $xy^2z \notin L$.
- ➤ This violates the conclusion of the pumping lemma, so our assumption that L is regular must have been false.

Strings of exponential lengths are a nonregular language

Claim: $L = \{w : |w| = 2^n \text{ for some } n \ge 0\}$ is not regular.

Proof:

Strings of exponential lengths are a nonregular language

Claim: $L = \{w : |w| = 2^n \text{ for some } n \ge 0\}$ is not regular.

Proof:

- Suppose L satisfies the pumping lemma with pumping length p.
- ► Choose any string $s \in L$ of length greater than p, say $|s| = 2^n$. By pumping lemma, write s = xyz.
- Let |y| = k. Then $2^n k$, 2^n , $2^n + k$, $2^n + 2 \cdot k$, ... are all powers of two.
- This is impossible. QED.

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a\text{'s and } b\text{'s}\}$ is not regular.

Proof #1:

▶ Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

"Regular Languages Can't Do Unbounded Counting"

Claim: $L = \{w : w \text{ has the same number of } a\text{'s and } b\text{'s}\}$ is not regular.

Proof #1:

▶ Use pumping lemma on $s = a^p b^p$ with $|xy| \le p$ condition.

Proof #2:

▶ If *L* were regular, then $L \cap a^*b^*$ would also be regular.

Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- $\{x: x \in L_1 \text{ and } x \notin L_2\}$, L_1 and L_2 are both regular
- A subset of a regular language

What Happens During the Transformations?

- ightharpoonup NFA
 ightarrow DFA
- ▶ DFA → Regular Expression
- ▶ Regular Expression → NFA

Minimizing DFAs

Many different DFAs accept the same language. But there is a smallest one—and we can find it!

- ▶ Let M be a DFA
- Say that states p, q of M are **distinguishable** if there is a string w such that exactly one of $\delta^*(p, w)$ and $\delta^*(q, w)$ is final.
- ► Start by dividing the states of *M* into two equivalence classes: the final and non-final states.

Minimizing DFAs, continued

- ▶ Break up the equivalence classes according to this rule: If p, q are in the same equivalence class but $\delta(p,\sigma)$ and $\delta(q,\sigma)$ are not equivalent for some $\sigma \in \Sigma$, then p and q must be separated into different equivalence classes.
- When all the states that must be separated have been found, form a new and finer equivalence relation.
- Repeat.
- How do we know that this process stops?