Computational Theory

Finite Automata and Regular Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2023

Adapted from notes by Russ Ross
Adapted from notes by Harry Lewis

Finite Automata

Reading: Sipser §1.1 and §1.2.

Deterministic Finite Automata (DFAs)

Example: Home Stereo

- $P=$ power button (ON/OFF)
- $S=$ source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode
- A computational problem: does a given sequence of button presses $w \in\{P, S\}^{*}$ leave the system with the radio on?

Formal Definition of a DFA

- A DFA M is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q : Finite set of states
Σ : Alphabet
$\delta:$ Transition function, $Q \times \Sigma \rightarrow Q$
$q_{0}:$ Start state, $q_{0} \in Q$
$F:$ Accept (or final) states, $F \subseteq Q$
- If $\delta(p, \sigma)=q$,
then if M is in state p and reads symbol $\sigma \in \Sigma$
then M enters state q (while moving to next input symbol)
- Home Stereo example: (in class exercise, define $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, then draw state machine representation.)

Another Visualization

Finite-state control changes
state depending on:

- current state
- next symbol

Accepting Strings

M accepts string X if

- After starting M in the start (initial) state with head on first square,
- when all of X has been read,
- M winds up in a final state.

Examples

- Bounded Counting: A DFA for
$\{x \mid x$ has an even \# of a 's and an odd \# of b 's $\}$

Another Example, to work out together

- Pattern Recognition: A DFA that accepts $\{x \mid x$ has $a a b$ as a substring $\}$.

Formal Definition of Computation

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w=w_{1} w_{2} \cdots w_{n} \in \Sigma^{*}$
(where each $w_{i} \in \Sigma$) if there exist $r_{0}, \ldots, r_{n} \in Q$ such that

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for each $i=0, \ldots, n-1$ and
3. $r_{n} \in F$.

The language recognized (or accepted) by M, denoted $L(M)$, is the set of all strings accepted by M.

Definition of Regular Languages

Definition 1.16 A language is called a regular language if some finite automaton recognizes it.

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by $\delta^{*}(q, \varepsilon)=q$,
$\delta^{*}(q, w \sigma)=\delta\left(\delta^{*}(q, w), \sigma\right)$.
- Intuitively, $\delta^{*}(q, w)=$
"state reached after starting in q and reading the string w. ."
- M accepts w if $\delta^{*}\left(q_{0}, w\right) \in F$.

Transition function on an entire string

More formal (not necessary for us, but notation sometimes useful):

- Inductively define $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ by $\delta^{*}(q, \varepsilon)=q$,

$$
\delta^{*}(q, w \sigma)=\delta\left(\delta^{*}(q, w), \sigma\right)
$$

- Intuitively, $\delta^{*}(q, w)=$
"state reached after starting in q and reading the string w. .
- M accepts w if $\delta^{*}\left(q_{0}, w\right) \in F$.

Determinism: Given M and w, the states r_{0}, \ldots, r_{n} are uniquely determined. Or in other words, $\delta^{*}(q, w)$ is well defined for any q and w : There is precisely one state to which w "drives" M if it is started in a given state.

The impulse for nondeterminism

A language for which it is hard to design a DFA:

$$
\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0 \text { and each } x_{i} \in\{a a b, a a b a, a a a\}\right\}
$$

But it is easy to imagine a "device" to accept this language if there sometimes can be several possible transitions!

Nondeterministic Finite Automata

An NFA is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q, Σ, q_{0}, F are as for DFAs
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)$

When in state p reading symbol σ, can go to any state q in the set $\delta(p, \sigma)$.

- there may be more than one such q, or
- there may be none (in case $\delta(p, \sigma)=\emptyset$).

Can "jump" from p to any state in $\delta(p, \varepsilon)$ without moving the input head.

Computations by an NFA

$N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts $w \in \Sigma^{*}$ if we can write $w=y_{1} y_{2} \ldots y_{m}$ where each $y_{i} \in \Sigma \cup\{\varepsilon\}$ and there exist $r_{0}, \ldots, r_{m} \in Q$ such that

1. $r_{0}=q_{0}$,
2. $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for each $i=0, \ldots, m-1$, and
3. $r_{m} \in F$.

Nondeterminism: Given N and w, the states r_{0}, \ldots, r_{m} are not necessarily determined.

Example of an NFA

N :

$N=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{0},\left\{q_{0}\right\}\right)$, where δ is given by:

	a	b	ε
q_{0}	$\left\{q_{1}\right\}$	\emptyset	\emptyset
q_{1}	$\left\{q_{2}\right\}$	\emptyset	\emptyset
q_{2}	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{3}\right\}$	\emptyset
q_{3}	$\left\{q_{0}\right\}$	\emptyset	\emptyset

Work out the tree of all possible computations on aabaab

How to simulate NFAs?

- NFA accepts w if there is at least one accepting computational path on input w.
- But the number of paths may grow exponentially with the length of w !
- Can exponential search be avoided?

NFAs and DFAs Closure Properties

Reading: Sipser §1.2.

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?
Theorem 1.39: For every NFA N, there exists a DFA M such that $L(M)=L(N)$.

Proof Outline: Given any NFA N, to construct a DFA M such that $L(M)=L(N)$:

NFAs vs. DFAs

NFAs seem more powerful than DFAs. Are they?
Theorem 1.39: For every NFA N, there exists a DFA M such that $L(M)=L(N)$.

Proof Outline: Given any NFA N, to construct a DFA M such that $L(M)=L(N)$:

- Have the DFA keep track, at all times, of all possible states the NFA could be in after reading the same initial part of the input string.
- I.e., the states of M are sets of states of N, and $\delta_{M}^{*}(R, w)$ is the set of all states N could reach after reading w, starting from a state in R.

Example of the SUBSET CONSTRUCTION

NFA N for $\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in\{a a b, a a b a, a a a\}\right\}$.

N starts in state 0 so we will construct a DFA M starting in state $\{0\}$.

Example of the SUBSET CONSTRUCTION

NFA N for $\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in\{a a b, a a b a, a a a\}\right\}$.

N starts in state 0 so we will construct a DFA M starting in state $\{0\}$. Here it is:

All other transitions are to the "dead state" \emptyset. The other states are unreachable, though technically must be defined. Final states are all those containing 0 , the final state of N.

Formal Construction of DFA M from

NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$

On the assumption that $\delta(p, \varepsilon)=\emptyset$ for all states p.
(i.e., we assume no ε-transitions, just to simplify things a bit)
$M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
Q^{\prime} & =\mathcal{P}(Q) \\
q_{0}^{\prime} & =\left\{q_{0}\right\} \\
F^{\prime} & \left.=\{R \subseteq Q \mid R \cap F \neq \emptyset\} \text { (that is, } R \in Q^{\prime}\right) \\
\delta^{\prime}(R, \sigma) & =\{q \in Q \mid q \in \delta(r, \sigma) \text { for some } r \in R\} \\
& =\bigcup_{r \in R} \delta(r, \sigma)
\end{aligned}
$$

Proving that the construction works

Claim: For every string w, running M on input w ends in the state $\{q \in Q \mid$ some computation of N on input w ends in state $q\}$.

Pf: By induction on $|w|$.
Can be extended to work even for NFAs with ε-transitions.

"THE SUBSET CONSTRUCTION"

Closure Properties

Theorem: The class of regular languages is closed under:

- (1.25/1.45) Union: $L_{1} \cup L_{2}$
- (1.26/1.47) Concatenation: $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- (1.49) Kleene *: $L_{1}^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in L_{1}\right\}$
- (P1.14) Complement: $\overline{L_{1}}$
- (1.26) Intersection: $L_{1} \cap L_{2}$

Closure Properties

Theorem: The class of regular languages is closed under:

- (1.25/1.45) Union: $L_{1} \cup L_{2}$
- (1.26/1.47) Concatenation: $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- (1.49) Kleene *: $L_{1}^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in L_{1}\right\}$
- (P1.14) Complement: $\overline{L_{1}}$
- (1.26) Intersection: $L_{1} \cap L_{2}$

Union: If L_{1} and L_{2} are regular, then $L_{1} \cup L_{2}$ is regular.

Closure Properties

Theorem: The class of regular languages is closed under:

- (1.25/1.45) Union: $L_{1} \cup L_{2}$
- (1.26/1.47) Concatenation: $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- (1.49) Kleene *: $L_{1}^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0\right.$ and each $\left.x_{i} \in L_{1}\right\}$
- (P1.14) Complement: $\overline{L_{1}}$
- (1.26) Intersection: $L_{1} \cap L_{2}$

Union: If L_{1} and L_{2} are regular, then $L_{1} \cup L_{2}$ is regular.

Concatenation, Kleene*, Complementation

Concatenation:

$$
L(M)=L\left(M_{1}\right) \circ L\left(M_{2}\right)
$$

Kleene*:
$L(M)=L\left(M_{1}\right)^{*}$

Complement:

$L(M)=\overline{L\left(M_{1}\right)}$

Concatenation, Kleene*, Complementation

Kleene*:
$L(M)=L\left(M_{1}\right)^{*}$

Complement:

$$
L(M)=\overline{L\left(M_{1}\right)}
$$

Concatenation, Kleene*, Complementation

Complement:
$L(M)=\overline{L\left(M_{1}\right)}$

Concatenation, Kleene*, Complementation

Concatenation:

$L(M)=L\left(M_{1}\right) \circ L\left(M_{2}\right)$

Kleene*:
$L(M)=L\left(M_{1}\right)^{*}$

Complement:

$L(M)=\overline{L\left(M_{1}\right)}$

- Assume M is deterministic (or make it so)
- Invert final/ nonfinal states

Closure under intersection

Intersection: $S \cap T=\overline{\bar{S}} \cup \bar{T}$

$$
\begin{aligned}
& B=\bar{S} \\
& \triangle=\bar{T}
\end{aligned}
$$

Hence closure under union and complement implies closure under intersection.

A more constructive and direct proof of closure under intersection

Better way ("Cross Product Construction"):
From DFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$:

$$
\begin{aligned}
Q & =Q_{1} \times Q_{2} \\
F & =F_{1} \times F_{2} \\
\delta\left(\left\langle r_{1}, r_{2}\right\rangle, \sigma\right) & =\left\langle\delta_{1}\left(r_{1}, \sigma\right), \delta_{2}\left(r_{2}, \sigma\right)\right\rangle \\
q_{0} & =\left\langle q_{1}, q_{2}\right\rangle
\end{aligned}
$$

Then $L\left(M_{1}\right) \cap L\left(M_{2}\right)=L(M)$

Some Efficiency Considerations

The subset construction shows that any n-state NFA can be implemented as a 2^{n}-state DFA.

NFA States	DFA States
4	16
10	1024
100	2^{100}
1000	$2^{1000} \gg$ the number of particles in the universe

How to implement this construction on an ordinary digital computer?

NFA states
$1, \ldots, n$

DFA state bit vector

0	1	1	0	\cdots	1
1	2				n

Is this construction the best we can do?

Could there be a construction that always produces an n^{2} state DFA for example?

Theorem: For every $n \geq 1$, there is a language L_{n} such that

1. There is an $(n+1)$-state NFA recognizing L_{n}.
2. There is no DFA recognizing L_{n} with fewer than 2^{n} states.

Conclusion: For finite automata, nondeterminism provides an exponential savings over determinism (in the worst case).

Proving that exponential blowup is sometimes unavoidable

(Could there be a construction that always produces a 2^{n} state DFA for example?)

Consider (for some fixed $n=17$, say)
$L_{n}=\left\{w \in\{a, b\}^{*}\right.$: the nth symbol from the right end of w is an $\left.a\right\}$

- There is an $(n+1)$-state NFA that accepts L_{n}.
- There is no DFA that accepts L_{n} and has $<2^{n}$ states

A "Fooling Argument"

- Suppose a DFA M has $<2^{n}$ states, and $L(M)=L_{n}$
- There are 2^{n} strings of length n.
- By the pigeonhole principle, two such strings $x \neq y$ must drive M to the same state q.
- Suppose x and y differ at the $k^{\text {th }}$ position from the right end (one has a, the other has b) ($k=1,2, \ldots$, or n)
- Then M must treat $x a^{n-k}$ and $y a^{n-k}$ identically (accept both or reject both). These strings differ at position n from the right end.
- So $L(M) \neq L_{n}$, contradiction. QED.

Illustration of the fooling argument

- x and y are different strings
(so there is a position k where one has a and the other has b)
- But both strings drive M from s to the same state q

What the argument proves

- This shows that the subset construction is within a factor of 2 of being optimal
- In fact it is optimal, i.e., as good as we can do in the worst case
- In many cases, the "generate-states-as-needed" method yields a DFA with $\ll 2^{n}$ states
(e.g. if the NFA was deterministic to begin with!)

Regular Expressions

Reading: Sipser §1.3.

Regular Expressions

- Let $\Sigma=\{a, b\}$. The regular expressions over Σ are certain expressions formed using the symbols $\left\{a, b,(),, \varepsilon, \emptyset, \cup, \circ,{ }^{*}\right\}$
- We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).
- Construction Rules (= inductive/recursive definition):

1. $a, b, \varepsilon, \emptyset$ are regular expressions
2. If R_{1} and R_{2} are RE's, then so are $\left(R_{1} \circ R_{2}\right),\left(R_{1} \cup R_{2}\right)$, and $\left(R_{1}^{*}\right)$.

- Examples:
- $(a \circ b)$
- $\left(\left(\left(\left(a \circ\left(b^{*}\right)\right) \circ c\right) \cup\left(\left(b^{*}\right) \circ a\right)\right)^{*}\right)$
- (b *)

What REs Do

- Regular expressions (which are strings) represent languages (which are sets of strings), via the function L :

$$
\begin{equation*}
L(b)=\{b\} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
L(\varepsilon)=\{\varepsilon\} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
L(a)=\{a\} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
L(\emptyset)=\emptyset \tag{4}
\end{equation*}
$$

$$
\text { (5) } L\left(\left(R_{1} \circ R_{2}\right)\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right)
$$

$$
\text { (6) } L\left(\left(R_{1} \cup R_{2}\right)\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)
$$

$$
\quad L\left(\left(R_{1}^{*}\right)\right)=L\left(R_{1}\right)^{*}
$$

- Example:

$$
L\left(\left(\left(a^{*}\right) \circ\left(b^{*}\right)\right)\right)=\{a\}^{*} \circ\{b\}^{*}
$$

- $L(\cdot)$ is called the semantics of the expression.

Syntactic Shorthand

- Drop the distinction between red and black, between object language and metalanguage
- Omit o symbol and many parentheses
- Union and concatenation of languages are associative
i.e., for any languages L_{1}, L_{2}, L_{3} :
$\left(L_{1} L_{2}\right) L_{3}=L_{1}\left(L_{2} L_{3}\right)$ and $\left(L_{1} \cup L_{2}\right) \cup L_{3}=L_{1} \cup\left(L_{2} \cup L_{3}\right)$
so we can write just $R_{1} R_{2} R_{3}$ and $R_{1} \cup R_{2} \cup R_{3}$
For example, the following are all equivalent:

$$
((a b) c) \quad(a(b c)) \quad a b c
$$

- Equivalent means "same semantics, maybe different syntax"

More syntactic sugar

- By convention, * takes precedence over o, which takes precedence over \cup.

So $a \cup b c^{*}$ is equivalent to $\left(a \cup\left(b \circ\left(c^{*}\right)\right)\right)$

- Σ is shorthand for $a \cup b$ (or the analogous RE for whatever alphabet is in use).

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring $a b a a b=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$
$=b^{*}\left(a b^{*} a b^{*}\right)^{*}$

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring $a b a a b=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$ $=b^{*}\left(a b^{*} a b^{*}\right)^{*}$

Strings with \leq two a 's $=$?

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring $a b a a b=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$ $=b^{*}\left(a b^{*} a b^{*}\right)^{*}$

Strings with \leq two a 's $=$?
Strings of form $x_{1} x_{2} \ldots x_{k}, k \geq 0$, each $x_{i} \in\{a a b, a a b a, a a a\}=$?

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring abaab $=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$ $=b^{*}\left(a b^{*} a b^{*}\right)^{*}$

Strings with \leq two a 's $=$?
Strings of form $x_{1} x_{2} \ldots x_{k}, k \geq 0$, each $x_{i} \in\{a a b, a a b a, a a a\}=$?
Decimal numerals, no leading zeros

$$
=0 \cup\left((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^{*}\right)
$$

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring $a b a a b=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$

$$
=b^{*}\left(a b^{*} a b^{*}\right)^{*}
$$

Strings with \leq two a 's $=$?
Strings of form $x_{1} x_{2} \ldots x_{k}, k \geq 0$, each $x_{i} \in\{a a b, a a b a, a a a\}=$?
Decimal numerals, no leading zeros

$$
=0 \cup\left((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^{*}\right)
$$

All strings with an even \# of a 's and an even \# of b 's

$$
=\left(b \cup a b^{*} a\right)^{*} \cap\left(a \cup b a^{*} b\right)^{*} \quad \text { but this isn't a regular expression }
$$

Examples of Regular Languages

Strings ending in $a=\Sigma^{*} a$
Strings containing the substring abaab $=$?
Strings of even length $=(a a \cup a b \cup b a \cup b b)^{*}$
Strings with even \# of a 's $=\left(b \cup a b^{*} a\right)^{*}$

$$
=b^{*}\left(a b^{*} a b^{*}\right)^{*}
$$

Strings with \leq two a 's $=$?
Strings of form $x_{1} x_{2} \ldots x_{k}, k \geq 0$, each $x_{i} \in\{a a b, a a b a, a a a\}=$?
Decimal numerals, no leading zeros

$$
=0 \cup\left((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^{*}\right)
$$

All strings with an even \# of a 's and an even \# of b 's

$$
\begin{aligned}
& =\left(b \cup a b^{*} a\right)^{*} \cap\left(a \cup b a^{*} b\right)^{*} \quad \text { but this isn't a regular expression } \\
& =(a a \cup b b)^{*}\left((a b \cup b a)(a a \cup b b)^{*}(a b \cup b a)(a a \cup b b)^{*}\right)^{*}
\end{aligned}
$$

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton that recognizes it.

Theorem: For every regular expression $R, L(R)$ is regular.
Proof (going back to hyper-formality for a moment):
Induct on the construction of regular expressions
("structural induction").
Base Case: R is a, b, ε, or \emptyset

accepts $\{\sigma\}$ accepts \emptyset accepts $\{\varepsilon\}$

Equivalence of REs and FAs, continued

Inductive Step: If R_{1} and R_{2} are REs and $L\left(R_{1}\right)$ and $L\left(R_{2}\right)$ are regular (inductive hyp.), then so are:

$$
\begin{aligned}
L\left(\left(R_{1} \circ R_{2}\right)\right) & =L\left(R_{1}\right) \circ L\left(R_{2}\right) \\
L\left(\left(R_{1} \cup R_{2}\right)\right) & =L\left(R_{1}\right) \cup L\left(R_{2}\right) \\
L\left(\left(R_{1}^{*}\right)\right) & =L\left(R_{1}\right)^{*}
\end{aligned}
$$

(By the closure properties of the regular languages).
Proof is constructive (actually produces the equivalent NFA, not just proves its existence).

Example conversion of a RE to a FA

$$
(a \cup \varepsilon)(a a \cup b b)^{*}
$$

The Other Direction

Theorem: For every regular language L, there is a regular expression R such that $L(R)=L$.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- One start state $q_{\text {start }}$ and only one accept state $q_{\text {accept }}$.
- Exactly one transition from q_{i} to q_{j} for every two states $q_{i} \neq q_{\text {accept }}$ and $q_{j} \neq q_{\text {start }}$ (including self-loops).

Steps toward the proof

Lemma: For every NFA N, there is an equivalent GNFA G.

- Add new start state, new accept state. Transitions?
- If multiple transitions between two states, combine. How?
- If no transition between two states, add one. With what transition?

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- Base case: $k=2$. Set R to be the label of the transition from $q_{\text {start }}$ to qaccept.

Ripping and repairing GNFAs to reduce the number of states

- Inductive Hypothesis: Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \geq 2$).
- Induction Step: Given a $(k+1)$-state GNFA G, we will construct an equivalent k-state GNFA G^{\prime}.

Rip: Remove a state q_{r} (other than $q_{\text {start }}, q_{\text {accept }}$).
Repair: For every two states $q_{i} \notin\left\{q_{\text {accept }}, q_{r}\right\}, q_{j} \notin\left\{q_{\text {start }}, q_{r}\right\}$, let $R_{i, j}, R_{i, r}, R_{r, r}, R_{r, j}$ be REs on transitions $q_{i} \rightarrow q_{j}, q_{i} \rightarrow q_{r}, q_{r} \rightarrow q_{r}$ and $q_{r} \rightarrow q_{j}$ in G, respectively, In G^{\prime}, put RE $R_{i, j} \cup R_{i, r} R_{r, r}^{*} R_{r, j}$ on transition $q_{i} \rightarrow q_{j}$.

Argue that $L\left(G^{\prime}\right)=L(G)$, which is regular by IH.

Also constructive.

Example conversion of an NFA to a RE

An NFA accepting strings with an even number of a 's with $\Sigma=\{a, b\}$.

Non-Regular Languages

Reading: Sipser, §1.4.

Goal: Explicit Non-Regular Languages

It appears that a language such as

$$
\begin{aligned}
L & =\left\{x \in \Sigma^{*}:|x|=2^{n} \text { for some } n \geq 0\right\} \\
& =\{a, b, a a, a b, b a, b b, a a a a, \ldots, b b b b, \text { aaaaaaaa }, \ldots\}
\end{aligned}
$$

can't be regular because the "gaps" in the set of possible lengths become arbitrarily large, and no DFA could keep track of them.

But this isn't a proof!

Approach:

1. Prove some general property P of all regular languages.
2. Show that L does not have P.

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length) such that
every string $s \in L$ of length at least p can be divided into $s=x y z$, where $y \neq \varepsilon$ and for every $n \geq 0, x y^{n} z \in L$.

Pumping Lemma (Basic Version)

If L is regular, then there is a number p (the pumping length) such that
every string $s \in L$ of length at least p can be divided into $s=x y z$, where $y \neq \varepsilon$ and for every $n \geq 0, x y^{n} z \in L$.

$n=1$	x	y	z	
$n=0$	x	z		
$n=2$	x	y	y	z

- Why is the part about p needed?
- Why is the part about $y \neq \varepsilon$ needed?

Proof of Pumping Lemma

(Another fooling argument)

- Since L is regular, there is a DFA M accepting L.
- Let $p=\#$ states in M.
- Suppose $s \in L$ has length $l \geq p$.
- M passed through a sequence of $l+1>p$ states while accepting s (including the first and last states): say, q_{0}, \ldots, q_{l}.
- Two of these states must be the same: say, $q_{i}=q_{j}$ where $i<j$

Pumping, continued

- Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

$$
M \text { in state } q_{i} \quad M \text { in state } q_{j}=q_{i}
$$

- If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- So since $x y z \in L$, then $x y^{n} z \in L$ for all n.

Pumping, continued

- Thus, we can break s into x, y, z where $y \neq \varepsilon$ (though x, z may equal ε):

$$
M \text { in state } q_{i} \quad M \text { in state } q_{j}=q_{i}
$$

- If more copies of y are inserted, M "can't tell the difference," i.e., the state entering y is the same as the state leaving it.
- So since $x y z \in L$, then $x y^{n} z \in L$ for all n.

Proof also shows:

- We can take $p=\#$ states in smallest DFA recognizing L.
- Can guarantee division $s=x y z$ satisfies $|x y| \leq p$ (or $|y z| \leq p$).

Pumping Lemma Example

- Consider

$$
L=\{x: x \text { has an even \# of } a \text { 's and an odd \# of } b \text { 's }\}
$$

- Since L is regular, pumping lemma holds. (i.e., every sufficiently long string s in L is "pumpable")
- For example, if $s=a a b$, we can write $x=\varepsilon, y=a a$, and $z=b$.

Pumping the even a 's, odd b 's language

Claim: L satisfies pumping lemma with pumping length $p=4$.

Proof:

Pumping the even a 's, odd b 's language

Claim: L satisfies pumping lemma with pumping length $p=4$.

Proof:

Consider any string s of length at least 4 , and write $s=t u$ where $|t|=4$

- Case 1: t has an even number of a 's and an even number of b 's. Then we can set $x=\varepsilon, y=t, z=u$.
- Case 2: t has $3 a$'s and $1 b$. Then we can set $y=a a$.
- Case 3: t has $3 b$'s and $1 a$. Then we can set $y=b b$.
- So L satisfies the pumping lemma with pumping length $p=4$.

Q: Can the Pumping Lemma be used to prove that L is regular? That is, does "Pumpable" \Rightarrow Regular?

Use PL to Show Languages are NOT Regular

Claim: $L=\left\{a^{n} b^{n}: n \geq 0\right\}=\{\varepsilon, a b, a a b b, a a a b b b, \ldots\}$ is not regular.

Proof by contradiction:

- Suppose that L is regular.
- So L has some pumping length $p>0$.
- Consider the string $s=a^{p} b^{p}$. Since $|s|=2 p>p$, we can write $s=x y z$ for some strings x, y, z as specified by the lemma.
- Claim: No matter how s is partitioned into $x y z$ with $y \neq \varepsilon$, we have $x y^{2} z \notin L$.
- This violates the conclusion of the pumping lemma, so our assumption that L is regular must have been false.

Strings of exponential lengths are a nonregular language

Claim: $L=\left\{w:|w|=2^{n}\right.$ for some $\left.n \geq 0\right\}$ is not regular.

Proof:

Strings of exponential lengths are a nonregular language

Claim: $L=\left\{w:|w|=2^{n}\right.$ for some $\left.n \geq 0\right\}$ is not regular.

Proof:

- Suppose L satisfies the pumping lemma with pumping length p.
- Choose any string $s \in L$ of length greater than p, say $|s|=2^{n}$. By pumping lemma, write $s=x y z$.
- Let $|y|=k$. Then $2^{n}-k, 2^{n}, 2^{n}+k, 2^{n}+2 \cdot k, \ldots$ are all powers of two.
- This is impossible. QED.

"Regular Languages Can’t Do Unbounded Counting"

Claim: $L=\{w: w$ has the same number of a 's and b 's $\}$ is not regular.

Proof \#1:

- Use pumping lemma on $s=a^{p} b^{p}$ with $|x y| \leq p$ condition.

"Regular Languages Can’t Do Unbounded Counting"

Claim: $L=\{w: w$ has the same number of a 's and b 's $\}$ is not regular.

Proof \#1:

- Use pumping lemma on $s=a^{p} b^{p}$ with $|x y| \leq p$ condition.

Proof \#2:

- If L were regular, then $L \cap a^{*} b^{*}$ would also be regular.

Reprise on Regular Languages

Which of the following are necessarily regular?

- A finite language
- A union of a finite number of regular languages
- $\left\{x: x \in L_{1}\right.$ and $\left.x \notin L_{2}\right\}, L_{1}$ and L_{2} are both regular
- A subset of a regular language

What Happens During the Transformations?

- NFA \rightarrow DFA
- DFA \rightarrow Regular Expression
- Regular Expression \rightarrow NFA

Minimizing DFAs

Many different DFAs accept the same language. But there is a smallest one-and we can find it!

- Let M be a DFA
- Say that states p, q of M are distinguishable if there is a string w such that exactly one of $\delta^{*}(p, w)$ and $\delta^{*}(q, w)$ is final.
- Start by dividing the states of M into two equivalence classes: the final and non-final states.

Minimizing DFAs, continued

- Break up the equivalence classes according to this rule: If p, q are in the same equivalence class but $\delta(p, \sigma)$ and $\delta(q, \sigma)$ are not equivalent for some $\sigma \in \Sigma$, then p and q must be separated into different equivalence classes.
- When all the states that must be separated have been found, form a new and finer equivalence relation.
- Repeat.
- How do we know that this process stops?

