Computational Theory

Context-free Languages

Curtis Larsen

Utah Tech University—Computing

Fall 2023

Adapted from notes by Russ Ross Adapted from notes by Harry Lewis

Context-free Grammars

Reading: Sipser §2.1 Context-free Grammars

Formal Definitions for CFGs

- ▶ A CFG $G = (V, \Sigma, R, S)$
 - V = Finite set of variables (or nonterminals)
 - $\Sigma =$ The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).
 - $R = \mathsf{A}$ finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.
 - S= The start variable, $S\in \mathit{V}$
 - e.g. $(\{S\}, \{a,b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$

Formal Definitions for CFGs

- ightharpoonup A CFG $G = (V, \Sigma, R, S)$
 - V = Finite set of variables (or nonterminals)
 - $\Sigma =$ The alphabet, a finite set of **terminals** $(V \cap \Sigma = \emptyset)$.
 - R= A finite set of **rules**, each of the form $A\to w$ for $A\in V$ and $w\in (V\cup \Sigma)^*$.
 - S =The start variable, $S \in V$
 - e.g. $(\{S\}, \{a, b\}, \{S \to aSb, S \to \varepsilon\}, S)$
- **Derivations:** For $\alpha, \beta \in (V \cup \Sigma)^*$ (strings of terminals and nonterminals),
 - $\alpha \Rightarrow \beta$ (" α yields β ") if $\alpha = uAv, \beta = uwv$, for some $u, v \in (V \cup \Sigma)^*$, and R contains rule $A \to w$.
 - $\alpha \stackrel{*}{\Rightarrow} \beta$ (" α derives β ") if there is a sequence $\alpha_0, \ldots, \alpha_k$ for $k \geq 0$ such that $\alpha_0 = \alpha, \alpha_k = \beta$, and $\alpha_{i-1} \Rightarrow \alpha_i$ for each $i = 1, \ldots, k$.

Definition of Context-free Language

➤ The set of strings that can be derived from a context-free grammar is the language generated by the grammar.

```
L(G) = \{w | w \text{ can be derived by G }\}

L(G) = \{w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w\} \text{ (strings of terminals only!)}
```

Any language that can be generated by a context-free grammar is a context-free language (CFL).

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

Variables? Terminals? Rules? Start variable?

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

- Variables? Terminals? Rules? Start variable?
- ightharpoonup Alternate G_1 :

$$A \to 0A1|B$$
$$B \to \#$$

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

- Variables? Terminals? Rules? Start variable?
- ightharpoonup Alternate G_1 :

$$A \to 0A1|B$$
$$B \to \#$$

 \triangleright Strings derived from G_1 ?

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

- Variables? Terminals? Rules? Start variable?
- ightharpoonup Alternate G_1 :

$$A \to 0A1|B$$
$$B \to \#$$

ightharpoonup Strings derived from G_1 ?

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

- Variables? Terminals? Rules? Start variable?
- ightharpoonup Alternate G_1 :

$$A \to 0A1|B$$
$$B \to \#$$

ightharpoonup Strings derived from G_1 ?

$$\#$$
, $0\#1$, $00\#11$, $000\#111$, ...

► $L(G_1) = ?$

 $ightharpoonup G_1$:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

- Variables? Terminals? Rules? Start variable?
- ightharpoonup Alternate G_1 :

$$A \to 0A1|B$$
$$B \to \#$$

ightharpoonup Strings derived from G_1 ?

L(
$$G_1$$
) = ? $\{0^n \# 1^n | n \ge 0\}$

Parse Trees

- A parse tree is a pictorial representation of a single derivation.
- ▶ The parse tree for w = 000 # 111, derived from G_1 .

Arithmetic Expressions

$$G_2$$
:
$$EXPR \rightarrow TERM \mid EXPR + TERM$$

$$TERM \rightarrow TERM * FACTOR \mid FACTOR$$

$$FACTOR \rightarrow (EXPR) \mid x \mid y$$

Arithmetic Expressions

$$G_2$$
:
$$EXPR \rightarrow TERM \mid EXPR + TERM$$

$$TERM \rightarrow TERM * FACTOR \mid FACTOR$$

$$FACTOR \rightarrow (EXPR) \mid x \mid y$$

Derived strings?

Arithmetic Expressions

```
G_2:
EXPR \rightarrow TERM \mid EXPR + TERM
TERM \rightarrow TERM * FACTOR \mid FACTOR
FACTOR \rightarrow (EXPR) \mid x \mid y
```

- Derived strings?
- $ightharpoonup L(G_2)$?

Arithmetic Expressions

```
G_2:
EXPR \rightarrow TERM \mid EXPR + TERM
TERM \rightarrow TERM * FACTOR \mid FACTOR
FACTOR \rightarrow (EXPR) \mid x \mid y
```

- Derived strings?
- $ightharpoonup L(G_2)$?
- Parse tree for some string?

▶ $L(G_3) = \{x \in \{(,)\}^* : \text{parentheses in } x \text{ are properly 'balanced'}\}.$ $G_3 = ?$

► $L(G_4) = \{x \in \{a, b\}^* : x \text{ has the same # of } a \text{'s and } b \text{'s} \}.$ $G_4 = ?$

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- ▶ the only possible rule with ε as the RHS is $S \to \varepsilon$ (Of course, this rule occurs iff $\varepsilon \in L(G)$)
- Every other rule is of the form
 - 1. $X \rightarrow YZ$ where X, Y, Z are variables
 - 2. $X \to \sigma$ where X is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- \triangleright ε -rule: one of the form $X \to \varepsilon$
- ▶ **Long Rule:** one of the form $X \to \alpha$ where $|\alpha| > 2$
- ▶ Unit Rule: one of the form $X \to Y$ where $X, Y \in V$
- ▶ Terminal-Generating Rule: one of the form $X \to \alpha$ where $\alpha \notin V^*$ and $|\alpha| \ge 1$ (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

- 1. All ε -rules, except maybe $S \to \varepsilon$
- 2. All unit rules
- 3. All long rules
- 4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type i < j.

Eliminating ε -Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \to S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to a YZb Y \implies$$

(Why does this terminate?)

Eliminating ε -Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \to S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to aYZbY \qquad \Rightarrow \qquad \begin{matrix} X \to aYZbY \\ X \to aZbY \\ X \to aYZb \\ X \to aZb \end{matrix}$$

(Why does this terminate?)

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \to u$, add rule $A \to u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \to u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and k > 3.
 - b. Replace with rules $A \to u_1A_1, A_1 \to u_2A_2, \dots, A_{k-2} \to u_{k-1}u_k$, where A_1, \dots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal a introduce a new nonterminal A.
 - **b.** Add the rules $A \rightarrow a$
 - c. "Capitalize" existing rules, e.g.

replace
$$X \rightarrow aY$$
 with $X \rightarrow AY$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$S \to XX X \to aXb \mid \varepsilon$$

Pushdown Automata

Reading: Sipser §2.2.

Pushdown Automata

A **pushdown automaton** = a finite automaton + "pushdown store".

The **pushdown store** is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto (q', \gamma')$, which means:

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ' on the stack and enter state q' while advancing the reading head over σ .

(Nondeterministic) PDA for "even palindromes"

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

Need to test whether stack empty: push \$ at beginning and check at end.

$$(q_0, \varepsilon, \varepsilon) \mapsto (q, \$)$$

 $(r, \varepsilon, \$) \mapsto (q_f, \varepsilon)$

Language acceptance with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- with the stack empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

no transition matches both the input and stack

Formal definition of a PDA

$$M = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

 $Q = \mathsf{states}$

 $\Sigma = \text{input alphabet}$

 $\Gamma = \text{stack alphabet}$

 $\delta = \text{transition function}$

$$Q\times (\Sigma\cup\{\varepsilon\})\times (\Gamma\cup\{\varepsilon\})\to \mathcal{P}(\,Q\times (\Gamma\cup\{\varepsilon\}))$$

 $q_0 = \text{start state}$

F = final states

Computation by a PDA

- ▶ M accepts w if we can write $w = w_1 \cdots w_m$, where each $w_i \in \Sigma \cup \{\varepsilon\}$, and there is a sequence of states r_0, \ldots, r_m and stack strings $s_0, \ldots, s_m \in \Gamma^*$ that satisfy
 - 1. $r_0 = q_0$ and $s_0 = \varepsilon$.
 - 2. For each i, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.
 - 3. $r_m \in F$.
- $ightharpoonup L(M) = \{w \in \Sigma^* : M \text{ accepts } w\}.$

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

Strategy:

- ► Keep $|\#_a(w) \#_b(w)| = n$ on stack in form of 1^n \$.
- ► Keep the **sign** of $\#_a(w) \#_b(w)$ in the state:
 - + or $0 \Rightarrow$ state q_+
 - $\text{ or } 0 \Rightarrow \text{ state } q_-$

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

- I. For every CFG G, there is a PDA Mwith L(M) = L(G)
- II. For every PDA M, there is a CFG G with L(G) = L(M)

Proof that every CFL is accepted by some PDA

Let
$$G = (V, \Sigma, R, S)$$

We'll allow a generalized sort of PDA that can push **strings** onto stack.

E.g.,
$$(q, a, b) \mapsto (r, cd)$$

Proof that every CFL is accepted by some PDA

Let
$$G = (V, \Sigma, R, S)$$

We'll allow a generalized sort of PDA that can push **strings** onto stack.

E.g.,
$$(q, a, b) \mapsto (r, cd)$$

The corresponding PDA has just 3 states:

 $q_{start} \sim \text{start state}$

 $q_{loop} \sim$ "main loop" state

 $q_{accept} \sim \text{final state}$

Stack alphabet = $V \cup \Sigma \cup \{\$\}$

CFL ⇒ PDA, Continued: The Transitions of the PDA

Transitions:

- $\delta(q_{start}, \varepsilon, \varepsilon) = \{(q_{loop}, S\$)\}$
 - "Start by putting S\$ on the stack, & go to q_{loop} "
- lacksquare $\delta(q_{loop}, \varepsilon, A) = \{(q_{loop}, w)\}$ for each rule $A \to w$
 - "Remove a variable from the top of the stack and replace it with a corresponding righthand side"
- $\delta(q_{loop}, \sigma, \sigma) = \{(q_{loop}, \varepsilon)\}$ for each $\sigma \in \Sigma$
 - "Pop a terminal symbol from the stack if it matches the next input symbol"
- $\delta(q_{loop}, \varepsilon, \$) = \{(q_{accept}, \varepsilon)\}.$
 - "Go to accept state if stack contains only \$."

Example

- ► Consider grammar G with rules $\{S \to aSb, S \to \varepsilon\}$ (so $L(G) = \{a^n b^n : n \ge 0\}$)
- Construct PDA

$$M = (\{q_{start}, q_{loop}, q_{accept}\}, \{a, b\}, \{a, b, S, \$\}, \delta, q_{start}, \{q_{accept}\})$$

Transition Function δ :

ightharpoonup Derivation $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Corresponding Computation:

The Dual Bottom-Up CFG \rightarrow PDA Construction

- - "Start by putting \$ on the stack, \$ go to q_{loop} "
- $\qquad \qquad \delta(q_{\mathsf{loop}},\sigma,\varepsilon) = \{(q_{\mathsf{loop}},\sigma)\} \text{ for each } \sigma \in \Sigma$
 - "Shift input symbols onto the stack"
- ▶ $\delta(q_{\mathsf{loop}}, \varepsilon, w^{\mathcal{R}}) = \{(q_{\mathsf{loop}}, A) : A \to w) \text{ is a rule of } G\}$
 - "Reduce right-hand sides on the stack to corresponding left-hand sides"
- - "Accept if the stack consists just of S above the bottom-marker"

Proof that for every PDA M there is a CFG G such that L(M) = L(G)

- First modify PDA M so that
 - Single accept state.
 - All accepting computations end with empty stack.
 - In every step, push a symbol or pop a symbol but not both.

Design of the grammar G equivalent to PDA M

- ▶ Variables: A_{pq} for every two states p, q of M
- ▶ Goal: A_{pq} generates all strings that can take M from p to q, beginning and ending with an empty stack.
- Rules:
 - ► For all states $p, q, r, A_{pq} \rightarrow A_{pr}A_{rq}$
 - For states p,q,r,s and $\sigma,\tau\in\Sigma$, $A_{pq}\to\sigma A_{rs}\tau$ if there is a stack symbol γ such that $\delta(p,\sigma,\varepsilon)$ contains (r,γ) and $\delta(s,\tau,\gamma)$ contains (q,ε)
 - ▶ For every state p, $A_{pp} \rightarrow \varepsilon$
- ► Start variable: $A_{q_{start}, q_{accent}}$

Visualizing the Construction

How to generate all possible strings that could be recognized moving from state p with an empty stack to q with an empty stack? Two cases:

- 1. If the stack is also empty in some middle state r, trace the path from $p \to r$ then $r \to q$
- 2. Else if $p \to r$ pushes γ on the stack and $s \to q$ pops it back off, generate $\sigma A_{rs} \tau$.

Proof Sketch: the Grammar is Equivalent to the PDA

Claim: $A_{pq} \stackrel{*}{\Rightarrow} w$ if and only if w can take M from p to q, beginning & ending w/empty stack

- ⇒ Proof by induction on length of derivation
- ← Proof by induction on length of computation
 - ▶ Computation of length 0 (base case): Use $A_{pp} \rightarrow \varepsilon$
 - Stack empties sometime in middle of computation: Use $A_{pq} \rightarrow A_{pr} A_{rq}$
 - Stack does not empty in middle of computation: Use $A_{pq} \rightarrow \sigma A_{rs} \tau$

STOP: End cgl.

Reading: Sipser §2.1 (except Chomsky Normal Form).

- Originated as abstract model for:
 - Structure of natural languages (Chomsky)
 - Syntactic specification of programming languages (Backus-Naur Form)

- Originated as abstract model for:
 - Structure of natural languages (Chomsky)
 - Syntactic specification of programming languages (Backus-Naur Form)
- A context-free grammar is a set of generative rules for strings e.g.

$$G = S \to aSb$$
$$S \to \varepsilon$$

A derivation looks like:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$L(G) = \{ \varepsilon, ab, aabb, \ldots \} = \{ a^n b^n : n > 0 \}$$

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

```
\langle term \rangle ::= \langle factor \rangle \mid \langle factor \rangle * \langle term \rangle \mid \langle factor \rangle / \langle term \rangle
```

"|" means "or" in the metalanguage = same left-hand side

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form)

due to John Backus and Peter Naur

```
\langle \text{term} \rangle ::= \langle \text{factor} \rangle \mid \langle \text{factor} \rangle * \langle \text{term} \rangle 
 \mid \langle \text{factor} \rangle / \langle \text{term} \rangle
```

"|" means "or" in the metalanguage = same left-hand side

2. "Railroad Diagrams"

Formal Definitions for CFGs

- ▶ A CFG $G = (V, \Sigma, R, S)$
 - V = Finite set of variables (or nonterminals)
 - $\Sigma =$ The alphabet, a finite set of **terminals** ($V \cap \Sigma = \emptyset$).
 - $R = \mathbf{A}$ finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.
 - S =The **start variable**, a member of V
 - e.g. $(\{S\}, \{a,b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$

Formal Definitions for CFGs

- ▶ A CFG $G = (V, \Sigma, R, S)$
 - V = Finite set of variables (or nonterminals)
 - $\Sigma =$ The alphabet, a finite set of **terminals** $(V \cap \Sigma = \emptyset)$.
 - $R = \mathbf{A}$ finite set of **rules**, each of the form $A \to w$ for $A \in V$ and $w \in (V \cup \Sigma)^*$.
 - S =The **start variable**, a member of V
 - e.g. $(\{S\}, \{a, b\}, \{S \to aSb, S \to \varepsilon\}, S)$
- **Derivations:** For $\alpha, \beta \in (V \cup \Sigma)^*$ (strings of terminals and nonterminals),
 - $\alpha \Rightarrow_G \beta$ if $\alpha = uAv, \beta = uwv$ for some $u, v \in (V \cup \Sigma)^*$ and rule $A \to w$.
 - $\alpha \stackrel{*}{\Rightarrow}_G \beta$ (" α yields β ") if there is a sequence $\alpha_0, \ldots, \alpha_k$ for $k \ge 0$ such that $\alpha_0 = \alpha, \alpha_k = \beta$, and $\alpha_{i-1} \Rightarrow_G \alpha_i$ for each $i = 1, \ldots, k$.
- ► $L(G) = \{w \in \Sigma^* : S \stackrel{*}{\Rightarrow}_G w\}$ (strings of terminals only!)

More examples of CFGs

Arithmetic Expressions

$$G_1$$
:
$$E \to x \mid y \mid E * E \mid E + E \mid (E)$$
 G_2 :
$$E \to T \mid E + T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid x \mid y$$

Q: Which is preferable? Why?

More examples of CFGs

▶ $L = \{x \in \{(,)\}^* : \text{parentheses in } x \text{ are properly 'balanced'}\}.$

▶ $L = \{x \in \{a, b\}^* : x \text{ has the same # of } a \text{'s and } b \text{'s} \}.$

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique leftmost derivation.

Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to 'interpret' x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is **ambiguous** if some string has two parse trees.

Example:

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages : Finite Automata

as

Context-free Languages: ???

Regular Grammars

Hint: There is a special kind of CFGs, the **regular grammars**, that generate exactly the regular languages.

A CFG is (right-)regular if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

- Variables are states.
- ► Transition $\delta(P, \sigma) = R$ P σ R becomes $P \to \sigma R$
- ▶ If P is accepting, add rule $P \to \varepsilon$ Example: $\{x : x \text{ has an even # of } a\text{'s and an even # of } b\text{'s}\}$

Other Direction: Omitted.

CFL Closure Properties and Non–Context-Free Languages

Reading: Sipser §2.3.

Closure Properties of CFLs

- Thm: The CFLs are closed under
 - Union
 - Concatenation
 - Kleene *
 - Intersection with a regular language

Intersection of a CFL and a regular language is CF

Pf sketch: Let L_1 be CF and L_2 be regular

$$L_1 = L(M_1)$$
, M_1 a PDA

$$L_2 = L(M_2)$$
, M_2 a DFA

 $Q_1 = \text{state set of } M_1$

 $Q_2 = \text{state set of } M_2$

Construct a PDA with state set $Q_1 \times Q_2$ which keeps track of computation of both M_1 and M_2 on input.

Q: Why doesn't this argument work if M_1 and M_2 are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF.

And the complement of a CFL is not necessarily CF (Asst 5).

Q: How to prove that languages are not context free?

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the **pumping length**) such that any $s \in L$ of length at least p can be divided into s = uvxuz, where

- 1. $uv^i xy^i z \in L$ for every $i \geq 0$,
- 2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
- 3. $|vxy| \leq p$.

Using the Pumping Lemma to Prove a language non–context-free

```
\{a^nb^nc^n:n\geq 0\} is not CF.
```

What are v, y?

- Contain 2 kinds of symbols
- Contain only one kind of symbol
- ⇒ Corollary: CFLs not closed under intersection (why?)
- Is the intersection of 2 CFLs or the complement of a CFL sometimes a CFL?

Recall: Parse Trees

Parse tree for aababb, the "yield" of the tree

Height = max length path from S to a terminal symbol = 6 in above example

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Finding "Repetition" in a big parse tree

- Since RHS of rules have bounded length, long strings must have tall parse trees
- A tall parse tree must have a path with a repeated nonterminal
- Let $p = b^m + 1$, where:

 $b = \max \text{ length of RHS of a rule}$

m = # of variables

Suppose T is the smallest parse tree for a string $s \in L$ of length at least p. Then

Let h = height of T. Then $b^h \ge p = b^m + 1$,

- $\Rightarrow h > m$,
- \Rightarrow Path of length h in T has a repeated variable.

Final annoying details

- ▶ Q: Why is v or y nonempty?
- **Q:** How to ensure $|vxy| \le p$?

Context-Free Recognition

Reading: Sipser §2.1 (Chomsky Normal Form).

Context-Free Recognition

- ▶ **Goal:** Given CFG G and string w to determine if $w \in L(G)$
- **First attempt:** Construct a PDA M from G and run M on w.
- Brute-Force Method:

Check all parse trees of height up to some upper limit depending on ${\cal G}$ and |w|

Exponentially costly

- Better:
 - 1. Transform G into Chomsky normal form (CNF) (once for G)
 - 2. Apply a special algorithm for CNF grammars (once for each w)

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- ▶ the only possible rule with ε as the RHS is $S \to \varepsilon$ (Of course, this rule occurs iff $\varepsilon \in L(G)$)
- Every other rule is of the form
 - 1. $X \rightarrow YZ$ where X, Y, Z are variables
 - 2. $X \to \sigma$ where X is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- \triangleright ε -rule: one of the form $X \to \varepsilon$
- ▶ **Long Rule:** one of the form $X \to \alpha$ where $|\alpha| > 2$
- ▶ Unit Rule: one of the form $X \to Y$ where $X, Y \in V$
- ▶ Terminal-Generating Rule: one of the form $X \to \alpha$ where $\alpha \notin V^*$ and $|\alpha| > 1$ (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

- 1. All ε -rules, except maybe $S \to \varepsilon$
- 2. All unit rules
- 3. All long rules
- 4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type i < j.

Eliminating ε -Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \to S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to a YZb Y \implies$$

(Why does this terminate?)

Eliminating ε -Rules

- 0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \to S_{old}$ if necessary).
- 1. To eliminate ε -rules, repeatedly do the following:
 - a. Pick a ε -rule $Y \to \varepsilon$ and remove it.
 - b. Given a rule $X \to \alpha$, where α contains n occurrences of Y, replace it with 2^n rules in which $0, \ldots, n$ occurrences are replaced by ε . (Do not add $X \to \varepsilon$ if previously removed.) e.g.

$$X \to aYZbY \qquad \Rightarrow \qquad \begin{matrix} X \to aYZbY \\ X \to aZbY \\ X \to aYZb \\ X \to aZb \end{matrix}$$

(Why does this terminate?)

Eliminating Unit and Long Rules

- 2. To eliminate unit rules, repeatedly do the following:
 - a. Pick a unit rule $A \rightarrow B$ and remove it.
 - b. For every rule $B \to u$, add rule $A \to u$ unless this is a unit rule that was previously removed.
- 3. To eliminate long rules, repeatedly do the following:
 - a. Remove a long rule $A \to u_1 u_2 \cdots u_k$, where each $u_i \in V \cup \Sigma$ and k > 3.
 - b. Replace with rules $A \to u_1 A_1, A_1 \to u_2 A_2, \dots, A_{k-2} \to u_{k-1} u_k$, where A_1, \dots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

- 4. To eliminate terminal-generating rules:
 - a. For each terminal a introduce a new nonterminal A.
 - **b.** Add the rules $A \rightarrow a$
 - c. "Capitalize" existing rules, e.g.

replace
$$X \rightarrow aY$$
 with $X \rightarrow AY$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$S \to XX X \to aXb \mid \varepsilon$$

Benefit of CNF for Deciding if $w \in L(G)$

- ▶ **Observation:** If $S \Rightarrow XY \Rightarrow^* w$, then w = uv, $X \Rightarrow^* u$, $Y \Rightarrow^* v$ where u, v are *strictly shorter* than w.
- ▶ **Divide and Conquer:** can decide whether *S* yields *w* by recursively determining which variables yield substrings of *w*.
- Dynamic Programming: record answers to all subproblems to avoid repeating work.

Determining $w \in L(G)$, for G in CNF

Let $w = a_1 \cdots a_n, a_i \in \Sigma$.

Determine sets $S_{ij} (1 \le i \le j \le n)$:

$$S_{ij} = \{X : X \stackrel{*}{\Rightarrow} a_i \cdots a_j, X \text{ variable of } G\}$$

$$a_1$$
 S_{11}
 a_2
 S_{12}
 S_{22}
 a_3
 S_{13}
 S_{23}
 S_{33}
 S_{24}
 S_{34}
 S_{44}
 S_{1n}
 S_{1n}
 S_{nn}

 $w \in L(G)$ iff start symbol $\in S_{1n}$

Filling in the Matrix

► Calculate S_{ij} by induction on j-i

$$(j - i = 0)$$

$$S_{ii} = \{X : X \to a_i \text{ is a rule of } G\}$$

$$(j-i>0)$$

$$X \in S_{ij} \text{ iff } \exists \text{ rule } X \to YZ$$

$$\exists k: i \leq k < j$$
such that $Y \in S_{ik}$

$$Z \in S_{k+1,j}$$

e.g. w = abaabb

The Chomsky Normal Form Parsing Algorithm

$$\begin{split} &\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\ &S_{ii} = \left\{X: X \rightarrow a_i \text{ is a rule} \right\} \\ &\text{for } d \leftarrow 1 \text{ to } n-1 \text{ do} \\ &\text{for } i \leftarrow 1 \text{ to } n-d \text{ do} \\ &S_{i,i+d} \leftarrow \bigcup_{j=i}^{i+d-1} \left\{ \begin{array}{l} X: X \rightarrow YZ \text{ is a rule,} \\ Y \in S_{ij}, Z \in S_{j+1,i+d} \end{array} \right\} \end{split}$$

Complexity: $\mathcal{O}(n^3)$.

Of what does this triply nested loop remind you?

Of what does this triply nested loop remind you?

- Matrix Multiplication
- In fact, better matrix multiplication algorithms yield (asymptotically) better general context free parsing algorithms
- ▶ Strassen's algorithm requires $\mathcal{O}(n^{2.81})$ instead of $\mathcal{O}(n^3)$ multiplications

Summary of Context-Free Recognition

- CFL to PDA reduction yields nondeterministic automaton
- ▶ By use of Chomsky Normal Form and dynamic programming, there is a general $\mathcal{O}(n^3)$ non-stack-based algorithm
- The deterministic CFLs are the languages recognizable by deterministic PDAs
- ▶ E.g. $\{wcw^R : w \in \{a,b\}^*\}$ is a deterministic CFL but $\{ww^R : w \in \{a,b\}^*\}$ (even palindromes) is not
- ▶ Methods used in compilers are deterministic stack-based algorithms, requiring that the source language be deterministic CF or a special type of deterministic CF (LR(k), etc.)

Beyond Context-Free

- ▶ A Context-Sensitive Grammar allows rules of the form $\alpha \to \beta$, where α and β are strings and $|\alpha| \le |\beta|$, so long as α contains at least one nonterminal.
- ▶ The possibility of using rules such as $aB \rightarrow aDE$ makes the grammar "sensitive to context"
- ▶ Is there an algorithm for determining whether $w \in L(G)$ where G is a CSG?
- But the field moved, and now we also move, from syntactic structures to computational difficulty