Computational Theory Context-free Languages

Curtis Larsen

Utah Tech University-Computing

Fall 2023

Adapted from notes by Russ Ross
Adapted from notes by Harry Lewis

Context-free Grammars

Reading: Sipser §2.1 Context-free Grammars

Formal Definitions for CFGs

- ACFG $G=(V, \Sigma, R, S)$
$V=$ Finite set of variables (or nonterminals)
$\Sigma=$ The alphabet, a finite set of terminals ($V \cap \Sigma=\emptyset$).
$R=$ A finite set of rules, each of the form $A \rightarrow w$ for $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
$S=$ The start variable, $S \in V$
e.g. $(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$

Formal Definitions for CFGs

- A CFG $G=(V, \Sigma, R, S)$
$V=$ Finite set of variables (or nonterminals)
$\Sigma=$ The alphabet, a finite set of terminals ($V \cap \Sigma=\emptyset$).
$R=$ A finite set of rules, each of the form $A \rightarrow w$ for $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
$S=$ The start variable, $S \in V$
e.g. $(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$
- Derivations: For $\alpha, \beta \in(V \cup \Sigma)^{*}$ (strings of terminals and nonterminals),
$\alpha \Rightarrow \beta$ (" α yields β ") if $\alpha=u A v, \beta=u w v$, for some $u, v \in(V \cup \Sigma)^{*}$, and R contains rule $A \rightarrow w$.
$\alpha \stackrel{*}{\Rightarrow} \beta$ (" α derives β ") if there is a sequence $\alpha_{0}, \ldots, \alpha_{k}$ for $k \geq 0$ such that $\alpha_{0}=\alpha, \alpha_{k}=\beta$, and $\alpha_{i-1} \Rightarrow \alpha_{i}$ for each $i=1, \ldots, k$.

Definition of Context-free Language

- The set of strings that can be derived from a context-free grammar is the language generated by the grammar.
$L(G)=\{w \mid w$ can be derived by $\mathbf{G}\}$
$L(G)=\left\{w \in \Sigma^{*}: S \stackrel{*}{\Rightarrow} w\right\}$ (strings of terminals only!)
- Any language that can be generated by a context-free grammar is a context-free language (CFL).

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \mid B \\
& B \rightarrow \#
\end{aligned}
$$

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \mid B \\
& B \rightarrow \#
\end{aligned}
$$

- Strings derived from G_{1} ?

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \mid B \\
& B \rightarrow \#
\end{aligned}
$$

- Strings derived from G_{1} ?
\#, 0\#1, 00\#11, 000\#111, ...

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \mid B \\
& B \rightarrow \#
\end{aligned}
$$

- Strings derived from G_{1} ?
\#, 0\#1, 00\#11, 000\#111, ...
- $L\left(G_{1}\right)=$?

Example CFG G_{1}

- G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \\
& A \rightarrow B \\
& B \rightarrow \#
\end{aligned}
$$

- Variables? Terminals? Rules? Start variable?
- Alternate G_{1} :

$$
\begin{aligned}
& A \rightarrow 0 A 1 \mid B \\
& B \rightarrow \#
\end{aligned}
$$

- Strings derived from G_{1} ?
\#, 0\#1, 00\#11, 000\#111, ...
- $L\left(G_{1}\right)=$?
$\left\{0^{n} \# 1^{n} \mid n \geq 0\right\}$

Parse Trees

- A parse tree is a pictorial representation of a single derivation.
- The parse tree for $w=000 \# 111$, derived from G_{1}.

More examples of CFGs

- Arithmetic Expressions

$$
G_{2}:
$$

$$
\begin{aligned}
E X P R & \rightarrow \text { TERM } \mid E X P R+T E R M \\
T E R M & \rightarrow \text { TERM } * F A C T O R \mid F A C T O R \\
F A C T O R & \rightarrow(E X P R)|x| y
\end{aligned}
$$

More examples of CFGs

- Arithmetic Expressions

$$
G_{2}:
$$

$$
\begin{aligned}
E X P R & \rightarrow \text { TERM } \mid E X P R+T E R M \\
T E R M & \rightarrow \text { TERM } * F A C T O R \mid F A C T O R \\
F A C T O R & \rightarrow(E X P R)|x| y
\end{aligned}
$$

- Derived strings?

More examples of CFGs

- Arithmetic Expressions

$$
G_{2}:
$$

$$
\begin{aligned}
E X P R & \rightarrow \text { TERM } \mid E X P R+T E R M \\
T E R M & \rightarrow \text { TERM } * F A C T O R \mid F A C T O R \\
F A C T O R & \rightarrow(E X P R)|x| y
\end{aligned}
$$

- Derived strings?
- $L\left(G_{2}\right)$?

More examples of CFGs

- Arithmetic Expressions

$$
G_{2}:
$$

$$
\begin{aligned}
E X P R & \rightarrow \text { TERM } \mid E X P R+T E R M \\
T E R M & \rightarrow \text { TERM } * F A C T O R \mid F A C T O R \\
F A C T O R & \rightarrow(E X P R)|x| y
\end{aligned}
$$

- Derived strings?
- $L\left(G_{2}\right)$?
- Parse tree for some string?

More examples of CFGs

- $L\left(G_{3}\right)=\left\{x \in\{(,)\}^{*}\right.$: parentheses in x are properly 'balanced' $\}$. $G_{3}=$?
- $L\left(G_{4}\right)=\left\{x \in\{a, b\}^{*}: x\right.$ has the same \# of a 's and b 's $\}$. $G_{4}=$?

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is $S \rightarrow \varepsilon$
(Of course, this rule occurs iff $\varepsilon \in L(G)$)
- Every other rule is of the form

1. $X \rightarrow Y Z$
where X, Y, Z are variables
2. $X \rightarrow \sigma$
where X is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- ε-rule: one of the form $X \rightarrow \varepsilon$
- Long Rule: one of the form $X \rightarrow \alpha$ where $|\alpha|>2$
- Unit Rule: one of the form $X \rightarrow Y$ where $X, Y \in V$
- Terminal-Generating Rule: one of the form $X \rightarrow \alpha$ where $\alpha \notin V^{*}$ and $|\alpha| \geq 1$ (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All ε-rules, except maybe $S \rightarrow \varepsilon$
2. All unit rules
3. All long rules
4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type $i<j$.

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{\text {old }}$ if necessary).
1. To eliminate ε-rules, repeatedly do the following:
a. Pick a ε-rule $Y \rightarrow \varepsilon$ and remove it.
b. Given a rule $X \rightarrow \alpha$, where α contains n occurrences of Y, replace it with 2^{n} rules in which $0, \ldots, n$ occurrences are replaced by ε. (Do not add $X \rightarrow \varepsilon$ if previously removed.) e.g.

$$
X \rightarrow a Y Z b Y \quad \Rightarrow
$$

(Why does this terminate?)

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{\text {old }}$ if necessary).
1. To eliminate ε-rules, repeatedly do the following:
a. Pick a ε-rule $Y \rightarrow \varepsilon$ and remove it.
b. Given a rule $X \rightarrow \alpha$, where α contains n occurrences of Y, replace it with 2^{n} rules in which $0, \ldots, n$ occurrences are replaced by ε. (Do not add $X \rightarrow \varepsilon$ if previously removed.) e.g.

$$
X \rightarrow a Y Z b Y \quad \Rightarrow \quad \begin{aligned}
& X \rightarrow a Y Z b Y \\
& X \rightarrow a Z b Y \\
& X \rightarrow a Y Z b \\
& X \rightarrow a Z b
\end{aligned}
$$

(Why does this terminate?)

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:
a. Pick a unit rule $A \rightarrow B$ and remove it.
b. For every rule $B \rightarrow u$, add rule $A \rightarrow u$ unless this is a unit rule that was previously removed.
3. To eliminate long rules, repeatedly do the following:
a. Remove a long rule $A \rightarrow u_{1} u_{2} \cdots u_{k}$, where each $u_{i} \in V \cup \Sigma$ and $k \geq 3$.
b. Replace with rules $A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}$, where A_{1}, \ldots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:
a. For each terminal a introduce a new nonterminal A.
b. Add the rules $A \rightarrow a$
c. "Capitalize" existing rules, e.g.

$$
\text { replace } X \rightarrow a Y
$$

$$
\text { with } X \rightarrow A Y
$$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$
\begin{aligned}
& S \rightarrow X X \\
& X \rightarrow a X b \mid \varepsilon
\end{aligned}
$$

Pushdown Automata

Reading: Sipser §2.2.

Pushdown Automata

A pushdown automaton = a finite automaton + "pushdown store".
The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto\left(q^{\prime}, \gamma^{\prime}\right)$, which means:
If in state q with σ on the input tape and γ on top of the stack, replace γ by γ^{\prime} on the stack and enter state q^{\prime} while advancing the reading head over σ.

(Nondeterministic) PDA for "even palindromes"

$$
\begin{aligned}
& \left\{w w^{\mathcal{R}}: w \in\{a, b\}^{*}\right\} \\
& (q, a, \varepsilon) \mapsto(q, a) \quad \text { Push } a^{\prime} \text { s } \\
& (q, b, \varepsilon) \mapsto(q, b) \quad \text { and } b \text { 's } \\
& (q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad \text { switch to other state } \\
& (r, a, a) \mapsto(r, \varepsilon) \\
& (r, b, b) \mapsto(r, \varepsilon) \quad \text { pop } a \text { 's matching input } \\
& (r, s \text { matching input }
\end{aligned}
$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$\left\{w w^{\mathcal{R}}: w \in\{a, b\}^{*}\right\}$
$(q, a, \varepsilon) \mapsto(q, a) \quad$ Push a 's
$(q, b, \varepsilon) \mapsto(q, b) \quad$ and b 's
$(q, \varepsilon, \varepsilon) \mapsto(r, \varepsilon) \quad$ switch to other state
$(r, a, a) \mapsto(r, \varepsilon) \quad$ pop a 's matching input
$(r, b, b) \mapsto(r, \varepsilon)$ pop b 's matching input

Need to test whether stack empty: push $\$$ at beginning and check at end.

$$
\begin{aligned}
\left(q_{0}, \varepsilon, \varepsilon\right) & \mapsto(q, \$) \\
(r, \varepsilon, \$) & \mapsto\left(q_{f}, \varepsilon\right)
\end{aligned}
$$

Language acceptance with PDAs

A PDA accepts an input string
If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- with the stack empty
and ends
- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

- no transition matches both the input and stack

Formal definition of a PDA

$$
\begin{gathered}
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right) \\
Q=\text { states } \\
\Sigma=\text { input alphabet } \\
\Gamma=\text { stack alphabet } \\
\delta=\text { transition function }
\end{gathered}
$$

$$
Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))
$$

$q_{0}=$ start state
$F=$ final states

Computation by a PDA

- M accepts w if we can write $w=w_{1} \cdots w_{m}$, where each $w_{i} \in \Sigma \cup\{\varepsilon\}$, and there is a sequence of states r_{0}, \ldots, r_{m} and stack strings $s_{0}, \ldots, s_{m} \in \Gamma^{*}$ that satisfy

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon$.
2. For each $i,\left(r_{i+1}, \gamma^{\prime}\right) \in \delta\left(r_{i}, w_{i+1}, \gamma\right)$ where $s_{i}=\gamma t$ and $s_{i+1}=\gamma^{\prime} t$ for some $\gamma, \gamma^{\prime} \in \Gamma \cup\{\varepsilon\}$ and $t \in \Gamma^{*}$.
3. $r_{m} \in F$.

- $L(M)=\left\{w \in \Sigma^{*}: M\right.$ accepts $\left.w\right\}$.

PDA for $\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$

PDA for $\left\{w \in\{a, b\}^{*}: \#_{a}(w)=\#_{b}(w)\right\}$

Strategy:

- Keep $\left|\#_{a}(w)-\#_{b}(w)\right|=n$ on stack in form of $1^{n} \$$.
- Keep the sign of $\#_{a}(w)-\#_{b}(w)$ in the state:

$$
\begin{aligned}
& + \text { or } 0 \Rightarrow \text { state } q_{+} \\
& - \text {or } 0 \Rightarrow \text { state } q_{-}
\end{aligned}
$$

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.
I. For every CFG G, there is a PDA M with $L(M)=L(G)$
II. For every PDA M, there is a CFG G with $L(G)=L(M)$

Proof that every CFL is accepted by some PDA

Let $G=(V, \Sigma, R, S)$
We'll allow a generalized sort of PDA that can push strings onto stack.
E.g., $(q, a, b) \mapsto(r, c d)$

Proof that every CFL is accepted by some PDA

Let $G=(V, \Sigma, R, S)$
We'll allow a generalized sort of PDA that can push strings onto stack.
E.g., $(q, a, b) \mapsto(r, c d)$

The corresponding PDA has just 3 states:

$$
\begin{aligned}
& q_{\text {start }} \sim \text { start state } \\
& q_{\text {loop }} \sim \text { "main loop" state } \\
& q_{\text {accept }} \sim \text { final state }
\end{aligned}
$$

Stack alphabet $=V \cup \Sigma \cup\{\$\}$

$\mathrm{CFL} \Rightarrow$ PDA, Continued: The Transitions of the PDA

Transitions:

- $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$
"Start by putting $S \$$ on the stack, \& go to $q_{\text {loop }} "$
- $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right)\right\}$ for each rule $A \rightarrow w$
"Remove a variable from the top of the stack and replace it with a corresponding righthand side"
- $\delta\left(q_{\text {loop }}, \sigma, \sigma\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$ for each $\sigma \in \Sigma$
"Pop a terminal symbol from the stack if it matches the next input symbol"
- $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\}$.
"Go to accept state if stack contains only \$."

Example

- Consider grammar G with rules $\{S \rightarrow a S b, S \rightarrow \varepsilon\}$

$$
\text { (so } \left.L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}\right)
$$

- Construct PDA
$M=\left(\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\},\{a, b\},\{a, b, S, \$\}, \delta, q_{\text {start }},\left\{q_{\text {accept }}\right\}\right)$
Transition Function δ :
- Derivation $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$

Corresponding Computation:

The Dual Bottom-Up CFG \rightarrow PDA Construction

- $\delta\left(q_{\text {start }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, \$\right)\right\}$
"Start by putting $\$$ on the stack, \& go to $q_{\text {loop }}$ "
- $\delta\left(q_{\text {loop }}, \sigma, \varepsilon\right)=\left\{\left(q_{\text {loop }}, \sigma\right)\right\}$ for each $\sigma \in \Sigma$
"Shift input symbols onto the stack"
- $\delta\left(q_{\text {loop }}, \varepsilon, w^{\mathcal{R}}\right)=\left\{\left(q_{\text {loop }}, A\right): A \rightarrow w\right)$ is a rule of $\left.G\right\}$
"Reduce right-hand sides on the stack to corresponding left-hand sides"
- $\left.\delta\left(q_{\text {loop }}, \varepsilon, S \$\right)=\left\{q_{\text {accept }}, \varepsilon\right)\right\}$
"Accept if the stack consists just of S above the bottom-marker"

Proof that for every PDA M there is a CFG G such that $L(M)=L(G)$

- First modify PDA M so that
- Single accept state.
- All accepting computations end with empty stack.
- In every step, push a symbol or pop a symbol but not both.

Design of the grammar G equivalent to PDA M

- Variables: $A_{p q}$ for every two states p, q of M
- Goal: $A_{p q}$ generates all strings that can take M from p to q, beginning and ending with an empty stack.
- Rules:
- For all states $p, q, r, A_{p q} \rightarrow A_{p r} A_{r q}$
- For states p, q, r, s and $\sigma, \tau \in \Sigma$, $A_{p q} \rightarrow \sigma A_{r s} \tau$ if there is a stack symbol γ such that $\delta(p, \sigma, \varepsilon)$ contains (r, γ) and $\delta(s, \tau, \gamma)$ contains (q, ε)
- For every state $p, A_{p p} \rightarrow \varepsilon$
- Start variable: $A_{q_{\text {start }} q_{\text {accept }}}$

Visualizing the Construction

How to generate all possible strings that could be recognized moving from state p with an empty stack to q with an empty stack? Two cases:

$$
A_{p q} \rightarrow A_{p r} A_{r q}
$$

$$
A_{p q} \rightarrow \sigma A_{r s} \tau
$$

1. If the stack is also empty in some middle state r, trace the path from $p \rightarrow r$ then $r \rightarrow q$
2. Else if $p \rightarrow r$ pushes γ on the stack and $s \rightarrow q$ pops it back off, generate $\sigma A_{r s} \tau$.

Proof Sketch: the Grammar is Equivalent to the PDA

Claim: $A_{p q} \stackrel{*}{\Rightarrow} w$ if and only if w can take M from p to q, beginning \& ending w/empty stack
\Rightarrow Proof by induction on length of derivation
\Leftarrow Proof by induction on length of computation

- Computation of length 0 (base case): Use $A_{p p} \rightarrow \varepsilon$
- Stack empties sometime in middle of computation:

Use $A_{p q} \rightarrow A_{p r} A_{r q}$

- Stack does not empty in middle of computation:

Use $A_{p q} \rightarrow \sigma A_{r s} \tau$

Context-free Grammars

STOP: End cgl.

Context-free Grammars

Reading: Sipser §2.1 (except Chomsky Normal Form).

Context-free Grammars

- Originated as abstract model for:
- Structure of natural languages (Chomsky)
- Syntactic specification of programming languages (Backus-Naur Form)

Context-free Grammars

- Originated as abstract model for:
- Structure of natural languages (Chomsky)
- Syntactic specification of programming languages (Backus-Naur Form)
- A context-free grammar is a set of generative rules for strings e.g.

$$
G=\quad \begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- A derivation looks like:

$$
\begin{array}{r}
S \Rightarrow a S b \\
L a a S b b \Rightarrow a a b b \\
L(G)=\{\varepsilon, a b, a a b b, \ldots\}=\left\{a^{n} b^{n}: n \geq 0\right\}
\end{array}
$$

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form) due to John Backus and Peter Naur

$$
\begin{array}{l|l}
\langle\text { term }\rangle::=\langle\text { factor }\rangle & \langle\text { factor }\rangle^{*}\langle\text { term }\rangle \\
& \langle\text { factor }\rangle /\langle\text { term }\rangle
\end{array}
$$

"|" means "or" in the metalanguage = same left-hand side

Equivalent Formalisms

1. Backus-Naur Form (aka BNF, Backus Normal Form) due to John Backus and Peter Naur

$$
\langle\text { term }\rangle::=\langle\text { factor }\rangle \quad \begin{aligned}
& \mid \\
& \\
& \\
& \mid \\
& \mid \text { factor }\rangle^{*}\langle\text { ferm }\rangle \\
& \langle\text { factor }\rangle /\langle\text { term }\rangle
\end{aligned}
$$

"|" means "or" in the metalanguage = same left-hand side
2. "Railroad Diagrams"

Formal Definitions for CFGs

- A CFG $G=(V, \Sigma, R, S)$
$V=$ Finite set of variables (or nonterminals)
$\Sigma=$ The alphabet, a finite set of terminals $(V \cap \Sigma=\emptyset)$.
$R=$ A finite set of rules, each of the form $A \rightarrow w$ for $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
$S=$ The start variable, a member of V
e.g. $(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$

Formal Definitions for CFGs

- ACFG $G=(V, \Sigma, R, S)$
$V=$ Finite set of variables (or nonterminals)
$\Sigma=$ The alphabet, a finite set of terminals $(V \cap \Sigma=\emptyset)$.
$R=$ A finite set of rules, each of the form $A \rightarrow w$ for $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
$S=$ The start variable, a member of V
e.g. $(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$
- Derivations: For $\alpha, \beta \in(V \cup \Sigma)^{*}$ (strings of terminals and nonterminals),
$\alpha \Rightarrow_{G} \beta$ if $\alpha=u A v, \beta=u w v$ for some $u, v \in(V \cup \Sigma)^{*}$ and rule $A \rightarrow w$.
$\alpha \stackrel{*}{\Rightarrow}_{G} \beta$ (" α yields β ") if there is a sequence $\alpha_{0}, \ldots, \alpha_{k}$ for $k \geq 0$ such that $\alpha_{0}=\alpha, \alpha_{k}=\beta$, and $\alpha_{i-1} \Rightarrow_{G} \alpha_{i}$ for each $i=1, \ldots, k$.
- $L(G)=\left\{w \in \Sigma^{*}: S \stackrel{*}{\Rightarrow}_{G} w\right\}$ (strings of terminals only!)

More examples of CFGs

- Arithmetic Expressions

$$
G_{1}:
$$

$$
E \rightarrow x|y| E * E|E+E|(E)
$$

$G_{2}:$

$$
\begin{aligned}
& E \rightarrow T \mid E+T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E)|x| y
\end{aligned}
$$

Q: Which is preferable? Why?

More examples of CFGs

- $L=\left\{x \in\{(,)\}^{*}:\right.$ parentheses in x are properly 'balanced' $\}$.
- $L=\left\{x \in\{a, b\}^{*}: x\right.$ has the same \# of a 's and b 's $\}$.

Parse Trees

Derivations in a CFG can be represented by parse trees.

Examples:

Each parse tree corresponds to many derivations, but has unique leftmost derivation.

Parsing

Parsing: Given $x \in L(G)$, produce a parse tree for x. (Used to 'interpret' x. Compilers parse, rather than merely recognize, so they can assign semantics to expressions in the source language.)

Ambiguity: A grammar is ambiguous if some string has two parse trees.

Example:

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages: Finite Automata
as
Context-free Languages : ???

Regular Grammars

Hint: There is a special kind of CFGs, the regular grammars, that generate exactly the regular languages.

A CFG is (right-)regular if any occurrence of a nonterminal on the RHS of a rule is as the rightmost symbol.

Turning a DFA into an equivalent Regular Grammar

- Variables are states.
- Transition $\delta(P, \sigma)=R$
 becomes $P \rightarrow \sigma R$
- If P is accepting, add rule $P \rightarrow \varepsilon$

Example: $\{x: x$ has an even \# of a 's and an even \# of b 's $\}$
Other Direction: Omitted.

CFL Closure Properties and Non-Context-Free Languages

Reading: Sipser §2.3.

Closure Properties of CFLs

- Thm: The CFLs are closed under
- Union
- Concatenation
- Kleene*
- Intersection with a regular language

Intersection of a CFL and a regular language is CF

Pf sketch: Let L_{1} be CF and L_{2} be regular
$L_{1}=L\left(M_{1}\right), M_{1}$ a PDA
$L_{2}=L\left(M_{2}\right), M_{2}$ a DFA
$Q_{1}=$ state set of M_{1}
$Q_{2}=$ state set of M_{2}
Construct a PDA with state set $Q_{1} \times Q_{2}$ which keeps track of computation of both M_{1} and M_{2} on input.

Q: Why doesn't this argument work if M_{1} and M_{2} are both PDAs?

In fact, the intersection of two CFLs is not necessarily CF. And the complement of a CFL is not necessarily CF (Asst 5).

Q: How to prove that languages are not context free?

Pumping Lemma for CFLs

Lemma: If L is context-free, then there is a number p (the pumping length) such that any $s \in L$ of length at least p can be divided into $s=u v x y z$, where

1. $u v^{i} x y^{i} z \in L$ for every $i \geq 0$,
2. $v \neq \varepsilon$ or $y \neq \varepsilon$, and
3. $|v x y| \leq p$.

Using the Pumping Lemma to Prove a language non-context-free

$\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$ is not CF.

aaaaaaaaaaaaaaaaa	bbbbbbbbbbbbbbbb	ccсссссссссссссс

What are v, y ?

- Contain 2 kinds of symbols
- Contain only one kind of symbol
\Rightarrow Corollary: CFLs not closed under intersection (why?)
Is the intersection of 2 CFLs or the complement of a CFL sometimes a CFL?

Recall: Parse Trees

Height = max length path from S to a terminal symbol $=6$ in above example

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Proof of Pumping Lemma

Show that there exists a p such that any string s of length $\geq p$ has a parse tree of the form:

Finding "Repetition" in a big parse tree

- Since RHS of rules have bounded length, long strings must have tall parse trees
- A tall parse tree must have a path with a repeated nonterminal
- Let $p=b^{m}+1$, where:
$b=$ max length of RHS of a rule
$m=$ \# of variables
- Suppose T is the smallest parse tree for a string $s \in L$ of length at least p. Then

Let $h=$ height of T. Then $b^{h} \geq p=b^{m}+1$,
$\Rightarrow h>m$,
\Rightarrow Path of length h in T has a repeated variable.

Final annoying details

- Q: Why is v or y nonempty?
- Q: How to ensure $|v x y| \leq p$?

Context-Free Recognition

Reading: Sipser §2.1 (Chomsky Normal Form).

Context-Free Recognition

- Goal: Given CFG G and string w to determine if $w \in L(G)$
- First attempt: Construct a PDA M from G and run M on w.
- Brute-Force Method:

Check all parse trees of height up to some upper limit depending on G and $|w|$

Exponentially costly

- Better:

1. Transform G into Chomsky normal form (CNF) (once for G)
2. Apply a special algorithm for CNF grammars (once for each w)

Chomsky Normal Form

Def: A grammar is in Chomsky normal form if

- the only possible rule with ε as the RHS is $S \rightarrow \varepsilon$
(Of course, this rule occurs iff $\varepsilon \in L(G)$)
- Every other rule is of the form

1. $X \rightarrow Y Z$
where X, Y, Z are variables
2. $X \rightarrow \sigma$
where X is a variable and σ is a single terminal symbol

Transforming a CFG into Chomsky Normal Form

Definitions:

- ε-rule: one of the form $X \rightarrow \varepsilon$
- Long Rule: one of the form $X \rightarrow \alpha$ where $|\alpha|>2$
- Unit Rule: one of the form $X \rightarrow Y$ where $X, Y \in V$
- Terminal-Generating Rule: one of the form $X \rightarrow \alpha$ where $\alpha \notin V^{*}$ and $|\alpha|>1$ (α has at least one terminal)

Eliminate non-Chomsky-Normal-Form Rules in Order:

1. All ε-rules, except maybe $S \rightarrow \varepsilon$
2. All unit rules
3. All long rules
4. All terminal-generating rules

Note: while eliminating rules of type j, we make sure not to reintroduce rules of type $i<j$.

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{\text {old }}$ if necessary).
1. To eliminate ε-rules, repeatedly do the following:
a. Pick a ε-rule $Y \rightarrow \varepsilon$ and remove it.
b. Given a rule $X \rightarrow \alpha$, where α contains n occurrences of Y, replace it with 2^{n} rules in which $0, \ldots, n$ occurrences are replaced by ε. (Do not add $X \rightarrow \varepsilon$ if previously removed.) e.g.

$$
X \rightarrow a Y Z b Y \quad \Rightarrow
$$

(Why does this terminate?)

Eliminating ε-Rules

0. Ensure start variable does not appear on the RHS of any rule (by adding new start variable with rule $S \rightarrow S_{\text {old }}$ if necessary).
1. To eliminate ε-rules, repeatedly do the following:
a. Pick a ε-rule $Y \rightarrow \varepsilon$ and remove it.
b. Given a rule $X \rightarrow \alpha$, where α contains n occurrences of Y, replace it with 2^{n} rules in which $0, \ldots, n$ occurrences are replaced by ε. (Do not add $X \rightarrow \varepsilon$ if previously removed.) e.g.

$$
X \rightarrow a Y Z b Y \quad \Rightarrow \quad \begin{aligned}
& X \rightarrow a Y Z b Y \\
& X \rightarrow a Z b Y \\
& X \rightarrow a Y Z b \\
& X \rightarrow a Z b
\end{aligned}
$$

(Why does this terminate?)

Eliminating Unit and Long Rules

2. To eliminate unit rules, repeatedly do the following:
a. Pick a unit rule $A \rightarrow B$ and remove it.
b. For every rule $B \rightarrow u$, add rule $A \rightarrow u$ unless this is a unit rule that was previously removed.
3. To eliminate long rules, repeatedly do the following:
a. Remove a long rule $A \rightarrow u_{1} u_{2} \cdots u_{k}$, where each $u_{i} \in V \cup \Sigma$ and $k \geq 3$.
b. Replace with rules $A \rightarrow u_{1} A_{1}, A_{1} \rightarrow u_{2} A_{2}, \ldots, A_{k-2} \rightarrow u_{k-1} u_{k}$, where A_{1}, \ldots, A_{k-2} are newly introduced variables used only in these rules.

Eliminating Terminal-Generating Rules

4. To eliminate terminal-generating rules:
a. For each terminal a introduce a new nonterminal A.
b. Add the rules $A \rightarrow a$
c. "Capitalize" existing rules, e.g.

$$
\text { replace } X \rightarrow a Y
$$

$$
\text { with } X \rightarrow A Y
$$

Example of Transformation to Chomsky Normal Form

Starting grammar:

$$
\begin{aligned}
& S \rightarrow X X \\
& X \rightarrow a X b \mid \varepsilon
\end{aligned}
$$

Benefit of CNF for Deciding if $w \in L(G)$

- Observation: If $S \Rightarrow X Y \Rightarrow^{*} w$, then $w=u v, X \Rightarrow^{*} u, Y \Rightarrow^{*} v$ where u, v are strictly shorter than w.
- Divide and Conquer: can decide whether S yields w by recursively determining which variables yield substrings of w.
- Dynamic Programming: record answers to all subproblems to avoid repeating work.

Determining $w \in L(G)$, for G in CNF

Let $w=a_{1} \cdots a_{n}, a_{i} \in \Sigma$.
Determine sets $S_{i j}(1 \leq i \leq j \leq n)$:
$S_{i j}=\left\{X: X \stackrel{*}{\Rightarrow} a_{i} \cdots a_{j}, X\right.$ variable of $\left.G\right\}$

$w \in L(G)$ iff start symbol $\in S_{1 n}$

Filling in the Matrix

- Calculate $S_{i j}$ by induction on $j-i$
- $(j-i=0)$

$$
S_{i i}=\left\{X: X \rightarrow a_{i} \text { is a rule of } G\right\}
$$

- $(j-i>0)$
$X \in S_{i j}$ iff \exists rule $X \rightarrow Y Z$ $\exists k: i \leq k<j$
such that $Y \in S_{i k}$
$Z \in S_{k+1, j}$
e.g. $w=a b a a b b$

The Chomsky Normal Form Parsing Algorithm

for $i \leftarrow 1$ to n do

$$
S_{i i}=\left\{X: X \rightarrow a_{i} \text { is a rule }\right\}
$$

for $d \leftarrow 1$ to $n-1$ do

$$
\text { for } i \leftarrow 1 \text { to } n-d \text { do }
$$

$$
S_{i, i+d} \leftarrow \bigcup_{j=i}^{i+d-1}\left\{\begin{array}{c}
X: X \rightarrow Y Z \text { is a rule } \\
Y \in S_{i j}, Z \in S_{j+1, i+d}
\end{array}\right\}
$$

Complexity: $\mathcal{O}\left(n^{3}\right)$.

Of what does this triply nested loop remind you?

Of what does this triply nested loop remind you?

- Matrix Multiplication
- In fact, better matrix multiplication algorithms yield (asymptotically) better general context free parsing algorithms
- Strassen's algorithm requires $\mathcal{O}\left(n^{2.81}\right)$ instead of $\mathcal{O}\left(n^{3}\right)$ multiplications

Summary of Context-Free Recognition

- CFL to PDA reduction yields nondeterministic automaton
- By use of Chomsky Normal Form and dynamic programming, there is a general $\mathcal{O}\left(n^{3}\right)$ non-stack-based algorithm
- The deterministic CFLs are the languages recognizable by deterministic PDAs
- E.g. $\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$ is a deterministic CFL but $\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$ (even palindromes) is not
- Methods used in compilers are deterministic stack-based algorithms, requiring that the source language be deterministic CF or a special type of deterministic CF (LR (k), etc.)

Beyond Context-Free

- A Context-Sensitive Grammar allows rules of the form $\alpha \rightarrow \beta$, where α and β are strings and $|\alpha| \leq|\beta|$, so long as α contains at least one nonterminal.
- The possibility of using rules such as $a B \rightarrow a D E$ makes the grammar "sensitive to context"
- Is there an algorithm for determining whether $w \in L(G)$ where G is a CSG?
- But the field moved, and now we also move, from syntactic structures to computational difficulty

