
Computational Theory
Turing Machines

Curtis Larsen

Utah Tech University—Computing

Fall 2023

Adapted from notes by Russ Ross

Curtis Larsen (Utah Tech University) CS 3530 Fall 2023 1 / 68



Turing Machines

Turing Machines

Reading: Sipser §3.1.
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Turing Machines Computability

Status Update

▶ Regular languages: DFA, NFA, RE, PL for RL
▶ Context-free languages: CFG, PDA, PL for CFL
▶ Turing Machines:

▶ Decidable languages
▶ Recognizable languages
▶ Unrecognizable languages
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Turing Machines Computability

Status Update
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Turing Machines Turing Machines

The Basic Turing Machine

a ⊔ a b a ⊔ · · ·

Finite
Control

▶ Head can both read and write, and move in both directions.

▶ Tape has a beginning on the left, and unbounded length.

▶ ⊔ is the blank symbol. All but a finite number of tape squares are
blank.

▶ Accept and reject states take effect immediately, not waiting for
end of input.
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Turing Machines Formal Definition

Formal Definition of a TM

A (deterministic) Turing Machine (TM) is a 7-tuple
(Q ,Σ,Γ, δ, q0, qaccept, qreject), where:

▶ Q is a finite set of states

▶ Σ is the finite input alphabet; ⊔ /∈ Σ

▶ Γ is the finite tape alphabet; ⊔ ∈ Γ, Σ ⊂ Γ

▶ δ: Q × Γ→ Q × Γ× {L,R}

▶ q0 ∈ Q is the start state

▶ qaccept ∈ Q is the accept state

▶ qreject ∈ Q is the reject state; qreject ̸= qaccept
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Turing Machines Formal Definition

The transition function

Q × Γ→ Q × Γ× {L,R}

▶ L and R are “move left” and “move right”

▶ δ(q , b) = (r , c,R)

▶ Rewrite b as c in current cell

▶ Switch from state q to state r

▶ And move right

▶ δ(q , b) = (r , c,L)

▶ Same as R, but move left

▶ Unless at left end of tape, in which case stay put
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Turing Machines Formal Definition

Computation of TMs
▶ A configuration is uqv , where q ∈ Q , u, v ∈ Γ∗.

▶ Tape contents = uv followed by all blanks

▶ State = q

▶ Head on first symbol of v .

▶ Don’t explicitly write the infinite number of ⊔ at the end of v .

▶ Start configuration = q0w , where w is input.

▶ One step of computation: (configuration Ci yields Ci+1)
▶ Configuration = uaqbv ; u, v ∈ Γ∗; a, b ∈ Γ; q ∈ Q .

▶ uaqbv → uacrv , if δ(q , b) = (r , c,R); b, c ∈ Γ; q , r ∈ Q .

▶ uaqbv → uracv , if δ(q , b) = (r , c,L); b, c ∈ Γ; q , r ∈ Q .

▶ qbv → rcv , if δ(q , b) = (r , c,L); b, c ∈ Γ; q , r ∈ Q .

▶ If r ∈ {qaccept, qreject}, computation halts.
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Turing Machines TMs and Languages

TM Results

▶ M accepts w if there is a sequence of configurations C1, . . . ,Ck

such that

1. C1 = q0w .

2. Ci yields Ci+1 for each i .

3. Ck is an accepting configuration (i.e. state of M is qaccept).

▶ M rejects w if there is a sequence of configurations C1, . . . ,Ck

such that

1. C1 = q0w .

2. Ci yields Ci+1 for each i .

3. Ck is a rejecting configuration (i.e. state of M is qreject).

▶ M halts on w if it accepts or rejects w .

▶ M loops on w if it does not halt on w .
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Turing Machines TMs and Languages

TMs and Language Membership

▶ L(M ) = {w |M accepts w}.
▶ L is Turing-recognizable if L = L(M ) for some TM M , and:

▶ w ∈ L⇒ M halts on w in state qaccept.

▶ w /∈ L⇒ M halts on w in state qreject OR M never halts (it “loops”).

▶ L is (Turing-)?decidable if L = L(M ) for some TM M , and:
▶ w ∈ L⇒ M halts on w in state qaccept.

▶ w /∈ L⇒ M halts on w in state qreject.
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Turing Machines TMs and Languages

w ∈ L or w /∈ L
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Turing Machines Machine Descriptions

Example Language

▶ B = {w#w |w ∈ {0, 1}∗}

▶ B is not context-free. (Can be shown with CFL PL)

▶ B is decidable. (Can be shown with TM)
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Turing Machines Machine Descriptions

Formal Descriptions

Formal description of MB , where L(MB ) = B .

▶ Q = {q0, ..., qaccept, qreject}

▶ Σ = {0, 1,#}

▶ Γ = {0, 1,#, x ,⊔}

▶ δ: ...

OR state diagram.
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Turing Machines Machine Descriptions

Implementation-level Descriptions

Let MB = “On input string w :

1. Until # is read.
2. Remember the symbol read, write x .
3. Move right until # or ⊔ seen.
4. If ⊔, reject.
5. Move right while x seen.
6. If symbol read is ⊔ or not remembered symbol, reject.
7. Write x .
8. Move left until #.
9. Move left until x .

10. Move right.
11. Move right until something other than x is read.
12. If symbol read is ⊔, accept. Otherwise, reject.”
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Turing Machines Machine Descriptions

High-level Descriptions

Let MB = “On input string w :

1. If there is no #, reject.
2. For each symbol left of the #, match against same position right

of the #. If there is a mismatch, reject.
3. If there are extra non-blank symbols right of the #, reject.
4. accept.”
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Turing Machines Variants

Multitape Machines

For a k tape machine:

δ: Q × Γk → Q × Γk × {L,R,S}k

a c b c a

b a a b a

c a b b c

q

· · ·

· · ·

· · ·

· · ·

tape 1

tape 2

tape k
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Turing Machines Variants

Multitape Machines

Theorem 3.13

Every multitape Turing machine has an equivalent single-tape Turing
machine.

Proof?
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Turing Machines Variants

Nondeterministic Machines

δ: Q × Γ→ P(Q × Γ× {L,R})

Curtis Larsen (Utah Tech University) CS 3530 Fall 2023 18 / 68



Turing Machines Variants

Nondeterministic Machines

Theorem 3.16

Every nondeterministic Turing machine has an equivalent deterministic
Turing machine.

Proof?
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Turing Machines Algorithms

The Church-Turing Thesis

Figure 3.22

Our intuitive notion of algorithms is equal to Turing machine
algorithms.
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Turing Machines Algorithms

Sample problem

Let A = {⟨G⟩|G is a connected undirected graph }.

Is A decidable?

Let M =“On input ⟨G⟩, the encoding of a graph:

1. Select the first node of G and mark it.
2. Repeat the following state until no new nodes are marked:
3. For each node in G , mark it if it is attached by an edge to a

node that is already marked.
4. Scan all nodes of G to determine whether they are all marked. If

the are accept; otherwise reject.”
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Turing Machines Algorithms

STOP

CGL STOP HERE
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Turing Machines Algorithms

Decidability, a.k.a. Recursiveness

▶ L is (Turing-)decidable if there is a TM M s.t.
▶ w ∈ L⇒ M halts on w in state qaccept.

▶ w /∈ L⇒ M halts on w in state qreject.

▶ Other common terminology
▶ Recursive = decidable

▶ Recursively enumerable (r.e.) = Turing-recognizable

▶ Because of alternate characterizations as sets that can be defined
via certain systems of recursive (self-referential) equations.
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Turing Machines Turing Machines

Turing Machines

Objective: Define a computational model that is

▶ General-purpose:
(as powerful as programming languages)

▶ Formally Simple:
(we can prove what cannot be computed)
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Turing Machines Origins of Computer Science

The Origins of Computer Science

Alan Mathison Turing

“On Computable Numbers, with an Application to the
Entscheidungsproblem” 1936

CF also

▶ David Hilbert
“Mathematical Problems” 1900

▶ Kurt Gödel
“On Formally Undecidable Propositions . . . ” 1931

▶ Alonzo Church
“An Unsolvable Problem of Elementary Number Theory” 1936
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Turing Machines Basic Turing Machine

Example

Claim: L = {anbncn : n ≥ 0} is decidable.
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Turing Machines Questions

Questions

▶ Does every TM recognize some language?

▶ Does every TM decide some language?

▶ How many Turing-recognizable languages are there?

▶ How many decidable languages are there?
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The Church-Turing Thesis

The Church-Turing Thesis

Reading: Sipser §3.2, §3.3.
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The Church-Turing Thesis Computability

“Computability”

▶ Defined in terms of Turing machines

▶ Computable = recursive/decidable (sets, functions, etc.)

▶ In fact an abstract, universal notion

▶ Many other computational models yield exactly the same classes
of computable sets and functions

▶ Power of a model = what is computable using the model
(extensional equivalence)

▶ Not programming convenience, speed (for now. . . ), etc.

▶ All translations between models are constructive
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The Church-Turing Thesis 2-way Infinite Tape

TM Extensions That Do Not Increase Its Power

▶ TMs with a 2-way infinite tape, unbounded to left and right

⊔ a b a a · · ·· · ·

Proof that TMs with 2-way infinite tapes are no more powerful
than the 1-way infinite tape variety.

“Simulation.” Convert any 2-way infinite TM into an equivalent
1-way infinite TM with a “two-track tape.”

c b a ⊔ b a ⊔ b a a · · ·· · ·
-5 -4 -3 -2 -1 0 1 2 3 4

Tape of 2-way
infinite TM M

b ⊔ a b c

a ⊔ b a a

· · ·
· · ·

-1 -2 -3 -4 -5

0 1 2 3 4

$

Corresponding
tape of 1-way
infinite TM M ′

b

a
= ⟨b, a⟩
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The Church-Turing Thesis 2-way Infinite Tape

Recall the Formal Definition of a TM:

A (deterministic) Turing Machine (TM) is a 7-tuple
(Q ,Σ,Γ, δ, q0, qaccept, qreject), where:

▶ Q is a finite set of states, containing
▶ the start state q0

▶ the accept state qaccept

▶ the reject state qreject (̸= qaccept)

▶ Σ is the input alphabet

▶ Γ is the tape alphabet
▶ Contains Σ

▶ Contains “blank” symbol ⊔ ∈ Γ− Σ

▶ δ : Q × Γ→ Q × Γ× {L,R} is the transition function.
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The Church-Turing Thesis 2-way Infinite Tape

Formalizing the Simulation of 2-way infinite tape TM

Formally, Γ′ = (Γ× Γ) ∪ {$}.

M ′ includes, for every state q of M , two states:

⟨q , 1⟩ ∼ “q , but we are working on upper track”

⟨q , 2⟩ ∼ “q , but we are working on lower track”

e.g. If δM (q , σ) = (q ′, σ′,L) then δM ′(⟨q , 1⟩, ⟨σ, τ⟩) = (⟨q ′, 1⟩, ⟨σ′, τ⟩,R).

Also need transitions for:

▶ Lower track

▶ U-turn on hitting endmarker

▶ Formatting input into “2-tracks”
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The Church-Turing Thesis Describing Turing Machines

Describing Turing Machines

Formal Description

▶ 7-tuple or state diagram

▶ Most of the course so far

Implementation Description

▶ Prose description of tape contents, head movements

▶ This lecture, some of next lecture, assignment 6

High-Level Description

▶ Does not refer to specific computational model

▶ Starting next time!
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The Church-Turing Thesis Multiple Tapes

More extensions

▶ Adding multiple tapes does not increase power of TMs

a ⊔ b c ⊔

⊔ a a b a

q

· · ·

· · ·
2-tape TM

(Convention: First tape used for I/O, like standard TM; Second
tape is available for scratch work)
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The Church-Turing Thesis Multiple Tapes

Simulation of multiple tapes

▶ Simulate a k -tape TM by a one-tape TM whose tape is split
(conceptually) into 2k tracks:
▶ k tracks for tape symbols

▶ k tracks for head position markers (one in each track)

a ⊔ b c ⊔
↑

⊔ a a b a

↑

$

· · ·
· · ·
· · ·
· · ·

(Sipser does a different simulation.)
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The Church-Turing Thesis Multiple Tapes

Simulation steps

▶ To simulate one move of the k -tape TM:

▶ Start with the head on the left endmarker

▶ Scan down the tape, remembering in the finite control the symbols
“scanned” by the k heads

▶ Scan back up the tape, revising each track in the vicinity of its head
marker

▶ Return the head to the left endmarker
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The Church-Turing Thesis Multiple Tapes

Speed of the simulation

▶ Note that the “equivalence” in ability to compute functions or
decide languages does not mean comparable speed.

e.g. A standard TM can decide L = {w#w : w ∈ Σ∗} in time
∼ |w |2, but there is a linear-time 2-tape decider.

▶ Let TM : Σ∗ → N measure the amount of time a decider M uses
on an input. That is, TM (w) is the number of steps TM M takes to
halt on input w .

▶ General fact about multitape to single-tape slowdown:

Theorem: If M is a multitape TM that takes time T (w) when run
on input w , then there is a 1-tape machine M ′ and a constant c
such that M ′ simulates M and takes at most cT (w)2 steps on
input w .
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The Church-Turing Thesis Nondeterministic TMs

Nondeterministic TMs

▶ Like TMs, but δ : Q × Γ→ P(Q × Γ× {L,R})

▶ It mainly makes sense to think of NTMs as recognizers

L(M ) = {w : M has some accepting computation on input w}

Example: NTM to recognize
{w : w is a binary notation for a product of two integers ≥ 2}

1. Write any binary numeral (except 0 or 1) [N.D.]

2. Write ⊔

3. Write any binary numeral (except 0 or 1) [N.D.]

4. Multiply

5. Compare product to the input; halt if they are equal, go into an
infinite loop if not.
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The Church-Turing Thesis Nondeterministic TMs

NTMs recognize the same languages as TMs

▶ Given a NTM M , we must construct a TM M ′ that determines,
on input w , whether M has an accepting computation on input w .

▶ M ′ systematically tries
▶ all one-step computations

▶ all two-step computations

▶ all three-step computations

▶ . . .
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The Church-Turing Thesis Nondeterministic TMs

Enumerating computations

▶ There is a bounded number of k -step computations, for each k .

(because for each configuration there is only a constant number of
“next” configurations in one step)

▶ Ultimately M ′ either:
▶ discovers an accepting computation of M , and accepts itself,

or

▶ searches forever, and does not halt
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The Church-Turing Thesis Nondeterministic TMs

In More Detail

▶ Suppose that the maximum number of different transitions for a
given (q , σ) is b.

▶ Number those transitions 1, . . . , b (or less)

▶ Any computation of k steps is determined by a sequence of k
numbers ≤ b (the “nondeterministic choices”).

▶ How M ′ works: 3 tapes

Original input to M ⊔

Simulated tape of M

1213 ⊔ · · · Nondeterministic choices for M ′

#1

#2

#3
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The Church-Turing Thesis Nondeterministic TMs

Simulating one step of M

▶ Each major phase of the simulation by M ′ is to simulate one finite
computation by M , using tape #3 to resolve nondeterministic
ambiguities.

▶ Between major phases, M ′

▶ erases tape #2 and copies tape #1 to tape #2

▶ Replaces string in {1, . . . , b}∗ on tape #3 with the lexicographically
next string to generate the next set of nondeterministic choices to
follow.

▶ Claim: L(M ′) = L(M )

▶ Q: Slowdown?
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The Church-Turing Thesis Equivalent Formalisms

Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the
TM formalism:

▶ TMs with 2-dimensional tapes

▶ Random-access TMs

▶ General Grammars

▶ 2-stack PDAs, 2-counter machines

▶ Church’s λ-calculus (µ-recursive functions)

▶ Markov algorithms

▶ Your favorite high-level programming language (C, Lisp, Java, . . . )

▶ . . .
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The Church-Turing Thesis General Grammars

General Grammars

▶ Like context-free grammars, except that if u → v is a rule, then u
may be any string containing a nonterminal.

▶ So the rule AXY → AYX where A,X ,Y ∈ V , “means” that the
two-symbol substring XY can be replaced by YX whenever it
appears with an A to its left.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2023 44 / 68



The Church-Turing Thesis General Grammars

Example of a General Grammar

A grammar to generate {anbncn : n ≥ 0}.

Σ = {a, b, c} V = {A,B ,C ,A′,B ′,C ′,S}

▶ A,B ,C are “aliases” for the terminal symbols a, b, c.

▶ Only a single occurrence of A′, B ′, or C ′ can be in the string being
derived

▶ It “crawls” from right to left, transforming nonterminal symbols into
terminals.
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The Church-Turing Thesis General Grammars

Rules for anbncn

▶ S → ABCS S → C ′ S → ε

(Thus S
∗⇒ (ABC )nC ′ for any n ≥ 0)

▶ CA→ AC BA→ AB CB → BC

(Any inversions of the proper order can be repaired)

▶ CC ′ → C ′c CC ′ → B ′c

(The c-transformer can crawl to the left, and turn into a
b-transformer)

▶ BB ′ → B ′b BB ′ → A′b

▶ AA′ → A′a A′ → ε

The only way to get a string of terminals yields one of the form
anbncn .

Curtis Larsen (Utah Tech University) CS 3530 Fall 2023 46 / 68



The Church-Turing Thesis Equivalence of Grammars and TMs

Grammars and Turing Machines are Equivalent

Theorem: A language is generated by a grammar if and only if it is
Turing-recognizable.

Proof:

1. L is generated by a grammar⇒ L is Turing-recognizable

Pf: Let L = L(G), G a grammar. To construct a NTM M such that
L(M ) = L, construct M so that

M nondeterministically carries out a derivation
S = w0 ⇒G w1 ⇒G w2 ⇒G · · · , checking each step to see if
wi = w .
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The Church-Turing Thesis Equivalence of Grammars and TMs

L Turing-recognizable⇒ L is generated by a grammar.

2. L is recognized by a TM M ⇒ L is generated by a grammar G

Pf: Without loss of generality, we assume that if M halts having
started on input w , right before halting it erases its tape.

G will simulate a backwards computation by M . The
intermediate strings will be configurations $uqσv$.
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The Church-Turing Thesis Equivalence of Grammars and TMs

Rules of the Grammar

▶ S → $qaccept$

▶ If δ(q , σ) = (q ′, σ′,R), then G has

σ′q ′ → qσ

σ′q ′$→ q$, if σ = ⊔

▶ If δ(q , σ) = (q ′, σ′,L), then G has

q ′τσ′ → τqσ for each τ ∈ Σ

q ′τ$→ τqσ$, if σ′ = ⊔
$q ′σ′ → $qσ

▶ Finally, $→ ε and, if q0 is the start state of the TM, q0 → ε
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The Church-Turing Thesis Equivalence of TMs and 2-CMs

Reduction of TMs to 2-CMs

A 2-counter machine (2-CM) has:

▶ A finite-state control

▶ Two counters, i.e., C1 and C2, which are registers containing
integers ≥ 0 with only 3 operations:
▶ Add 1 to C1/C2

▶ Subtract 1 from C1/C2

▶ Is C1/C2 = 0?

Theorem: For any TM, there is an equivalent 2-CM, in the sense that if
you start the 2-CM with an encoding of the TM tape in its counters it
will eventually halt with an encoding of what the TM computes.
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The Church-Turing Thesis Equivalence of TMs and 2-CMs

Simulating a TM tape with 2 pushdown stores:
Split the tape at the head position into two stacks

Moving TM head to left ≡ Pop from stack #1
Push onto stack #2

Moving TM head to right ≡ Pop from stack #2
Push onto stack #1

Change scanned symbol ≡ Change top of stack #1

(So 2-PDSs are as powerful as TMs)
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The Church-Turing Thesis Equivalence of TMs and 2-CMs

Simulating One Stack with Two Counters:
Think of the stack as a number in a base = |Σ|+ 1

[Assume ≤ 9 stack symbols]

Pop the stack ≡ Divide by 10 and
discard the remainder

Push a9 ≡ Multiply by 10 and add 9

Is stack top = a3? ≡ Is counter mod 10 = 3?

→ All of these can be calculated using a second counter.
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The Church-Turing Thesis Equivalence of TMs and 2-CMs

Simulating Four Counters With Two:
(p, q , r , s)→ 2p3q5r7s

Add 1 to C1 ≡ p ← p + 1
≡ Double C1′

Is C3 ̸= 0? ≡ r ̸= 0?
≡ Does 5 divide C1′ evenly?

Subtract 1 from s ≡ Divide C1′ by 7
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The Church-Turing Thesis The Church-Turing Thesis

The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these formal models of algorithms capture our intuitive notion
of algorithms is the Church-Turing Thesis.

(Church’s thesis = partial recursive functions, Turing’s thesis = Turing
machines)

This is an extramathematical proposition, not subject to formal proof.

Curtis Larsen (Utah Tech University) CS 3530 Fall 2023 54 / 68



Decidability and a Universal Turing Machine

Decidability and a Universal Turing Machine

Reading: Sipser §4.1.
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Decidability and a Universal Turing Machine Enumerators

Another TM Variant: Enumerators

Def: A TM M enumerates a language L if M , when started from a
blank tape, runs forever and “emits” all and only the strings in L.

(For example, by writing the string on a special tape and passing
through a designated state.)

· · ·

· · ·M

Work Tape

Output Tape
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Decidability and a Universal Turing Machine Enumerability

Recognizable ≡ enumerable

Theorem: L is Turing-recognizable iff L is enumerated by some TM.

Proof:

(⇒) Suppose L(M ) = L. We want to construct a TM M ′ that
enumerates L.
M ′ dovetails all of the computations by M :

1. Do 1 step of M ’s computation on w0

2. Do 2 steps of M on w0 and w1

3. Do 3 steps on each of w0,w1,w2

where w0,w1, . . . = lexicographic enumeration of Σ∗.

Outputting any strings wi whose computations have accepted.
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Decidability and a Universal Turing Machine Enumerability

Recognizable ≡ enumerable, finis

(⇐) Conversely, suppose M enumerates L. We want to show that
L is RE.

Given w , run M on the blank tape. Every time M passes through
state q (the “enumeration state”) pause to see if w is on the output
tape and halt if it is.

The language recognized by this algorithm is exactly the
language enumerated by M . QED.

▶ The Turing-decidable sets are usually called recursive because
they can be computed using certain systems of recursive
equations, rather than via TMs.

▶ The Turing-recognizable sets are usually called recursively
enumerable, i.e., “computably enumerable.”
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Decidability and a Universal Turing Machine In-order Enumerability

Enumerable in order ≡ decidability

Theorem: L is decidable iff L is enumerable in lexicographic order.

(lexicographic order has shorter strings before longer, and
alphabetic order among strings of the same length)

Proof of⇒: If L is decidable, then to enumerate L in order, generate all
of Σ∗ in order and test each string for membership in L, enumerating
those that are members.

Almost proof of⇐: to test if w ∈ L, enumerate L and wait until either w
or a lexically later string is enumerated. ????
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Decidability and a Universal Turing Machine Decidability

Decidability

▶ Recall that a language L ⊆ Σ∗ is decidable if there is a TM that
always halts when started on an input in Σ∗, in either qaccept if
w ∈ L or qreject if w /∈ L.

▶ Proposition: Every regular language is decidable.

Proof: (By “coding” a DFA as a TM.)
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Decidability and a Universal Turing Machine Decidability and Regular Languages

Asking questions about arbitrary finite automata

▶ Q: What if the DFA D is part of the input? That is, can we design a
single TM that, given two inputs, D and w , decides whether D
accepts w?
▶ The TM needs to use a fixed alphabet & state set for all inputs D , w .

Q: How to represent D = (Q ,ΣD , δ, q0,F ) and w?
List each component of the 5-tuple, separated by |’s.
▶ Represent elements of Q as binary strings over {0, 1},

seperated by ,’s.

▶ Represent elements of ΣD as binary strings over {0, 1},
seperated by ,’s.

▶ Represent δ : Q × ΣD → Q as a sequence of triples (q , σ, q ′),
separated by ,’s, etc.

We denote the encoding of D and w as ⟨D ,w⟩.
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Decidability and a Universal Turing Machine Decidability and Regular Languages

A “Universal” algorithm for deciding regular languages

▶ Proposition: ADFA = {⟨D ,w⟩ : D a DFA that accepts w} is
decidable.

Proof sketch:
▶ First check that input is of proper form.

▶ Then simulate D on w . Implementation on a multitape TM:
▶ Tape 2: String w with head at current position (or to be precise, its

representation).

▶ Tape 3: Current state q of D (i.e., its representation).

▶ Could work with other encodings, e.g., transition function as a
matrix rather than list of triples.
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Decidability and a Universal Turing Machine Representation Independence

Representation independence

▶ General point: Notions of computability (e.g. decidability and
recognizability) are independent of data representation.
▶ A TM can convert any reasonable encoding to any other

reasonable encoding.

▶ We will use ⟨·⟩ to mean “any reasonable encoding”.

▶ We will revisit representation issues when we discuss
computational speed.

▶ For the moment we are interested only in whether problems are
decidable, undecidable, recognizable, etc., so we can be content
knowing that there is some representation on which an algorithm
could work.
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Decidability and a Universal Turing Machine Representation Independence

Describing Turing Machines

Formal Description

▶ 7-tuple or state diagram

▶ Most of the course so far

Implementation Description

▶ Prose description of tape contents, head movements

▶ Previous lecture and today’s lecture so far

High-Level Description

▶ Does not refer to specific computational model, data
representation

▶ From now on!
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Decidability and a Universal Turing Machine Decidable Problems

More Decidable Problems

▶ {⟨R,w⟩ : R is a regular expression that generates w}.

▶ {⟨X ⟩ : X is a DFA/NFA/RE such that L(X ) = ∅}.

▶ {⟨X ⟩ : X is a DFA/NFA/RE such that |L(X )| =∞}.

▶ {⟨M ,w⟩ : M is a PDA that accepts w}.

▶ Every context-free language.
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Decidability and a Universal Turing Machine Universal Turing Machine

A Universal Turing machine

▶ Theorem: There is a Turing machine U , such that when U is
given ⟨M ,w⟩ for any TM M and w , U produces the same result
(accept/reject/loop) as running M on w .

Proof: Initially,
▶ First tape contains ⟨M ⟩, including in particular its transition

function δM .

▶ Second tape contains ⟨w⟩.
▶ Third tape contains ⟨qstart⟩.
▶ Simulate steps of M by multiple steps of U .

(Brief return to implementation description.)

⇒ Turing machines can be “programmed”.
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Decidability and a Universal Turing Machine Universal Turing Machine

Consequences of the existence of
Universal Turing Machines

▶ Corollary: ATM = {⟨M ,w⟩ : M accepts w} is Turing-recognizable
(r.e.).

▶ Corollary: HALTTM = {⟨M ,w⟩ : M eventually halts on w}
(“The Halting Problem”) is Turing-recognizable.

▶ Corollary: “The Turing Machines that halt on some input are an
r.e. set” (What does this mean?)

▶ Q: What about {⟨M ,w ,n⟩ : M halts on w in at most n steps}?

▶ Q: Are these sets decidable?

▶ Q: Are there undecidable languages?
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Decidability and a Universal Turing Machine Decidability vs. Recognizability

Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

Proof:

If M decides L, then a machine can recognize L by running M ,
and then going into an infinite loop if M would have halted in the
qreject state.

2. If L is recursive then so is L.

Proof:
A machine can decide L by running M and then giving a “no”
answer when M would give “yes” and vice versa.

3. L is recursive if and only if both L and L are r.e.

Proof:
. . .
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