Computational Theory Turing Machines

Curtis Larsen

Utah Tech University—Computing

Fall 2023

Adapted from notes by Russ Ross

Curtis Larsen (Utah Tech University)

CS 3530

Turing Machines

Reading: Sipser §3.1.

Status Update

- Regular languages: DFA, NFA, RE, PL for RL
- Context-free languages: CFG, PDA, PL for CFL
- Turing Machines:
 - Decidable languages
 - Recognizable languages
 - Unrecognizable languages

Status Update

The Basic Turing Machine

- Head can both read and write, and move in both directions.
- Tape has a beginning on the left, and unbounded length.
- ► □ is the blank symbol. All but a finite number of tape squares are blank.
- Accept and reject states take effect immediately, not waiting for end of input.

Formal Definition of a TM

A (deterministic) **Turing Machine (TM)** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states
- Σ is the finite **input alphabet**; $\Box \notin \Sigma$
- Γ is the finite tape alphabet; $\sqcup \in \Gamma$, $\Sigma \subset \Gamma$
- $\blacktriangleright \ \delta: \ Q \times \Gamma \to \ Q \times \Gamma \times \{L, R\}$
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the **accept state**
- $q_{\text{reject}} \in Q$ is the **reject state**; $q_{\text{reject}} \neq q_{\text{accept}}$

The transition function

$Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$

- L and R are "move left" and "move right"
- $\blacktriangleright \ \delta(q,b) = (r,c,R)$
 - Rewrite b as c in current cell
 - Switch from state q to state r
 - And move right
- $\blacktriangleright \ \delta(q,b) = (r,c,L)$
 - Same as *R*, but move left
 - Unless at left end of tape, in which case stay put

Computation of TMs

- A configuration is uqv, where $q \in Q$, $u, v \in \Gamma^*$.
 - Tape contents = uv followed by all blanks
 - State = q
 - Head on first symbol of v.
 - Don't explicitly write the infinite number of \Box at the end of v.
- Start configuration $= q_0 w$, where w is input.
- One step of computation: (configuration C_i yields C_{i+1})
 - Configuration = uaqbv; $u, v \in \Gamma^*$; $a, b \in \Gamma$; $q \in Q$.
 - $uaqbv \rightarrow uacrv$, if $\delta(q, b) = (r, c, R)$; $b, c \in \Gamma$; $q, r \in Q$.
 - ► $uaqbv \rightarrow uracv$, if $\delta(q, b) = (r, c, L)$; $b, c \in \Gamma$; $q, r \in Q$.
 - $qbv \rightarrow rcv$, if $\delta(q, b) = (r, c, L)$; $b, c \in \Gamma$; $q, r \in Q$.

▶ If $r \in \{q_{\text{accept}}, q_{\text{reject}}\}$, computation halts.

TMs and Languages

TM Results

- *M* accepts *w* if there is a sequence of configurations C_1, \ldots, C_k such that
 - 1. $C_1 = q_0 w$.
 - **2**. C_i yields C_{i+1} for each *i*.
 - 3. C_k is an accepting configuration (i.e. state of *M* is q_{accept}).
- *M* rejects *w* if there is a sequence of configurations C_1, \ldots, C_k such that
 - 1. $C_1 = q_0 w$.
 - **2**. C_i yields C_{i+1} for each *i*.
 - 3. C_k is a rejecting configuration (i.e. state of *M* is q_{reject}).
- M halts on w if it accepts or rejects w.
- M loops on w if it does not halt on w.

TMs and Language Membership

- $L(M) = \{w | M \text{ accepts } w\}.$
- L is **Turing-recognizable** if L = L(M) for some TM M, and:
 - $w \in L \Rightarrow M$ halts on w in state q_{accept} .
 - ▶ $w \notin L \Rightarrow M$ halts on w in state q_{reject} OR M never halts (it "loops").
- ▶ *L* is (Turing-)?decidable if L = L(M) for some TM *M*, and:
 - $w \in L \Rightarrow M$ halts on w in state q_{accept} .
 - $w \notin L \Rightarrow M$ halts on w in state q_{reject} .

$w \in L \text{ or } w \notin L$

Machine Descriptions

Example Language

- ▶ $B = \{w \# w | w \in \{0, 1\}^*\}$
- B is not context-free. (Can be shown with CFL PL)
- ▶ *B* is decidable. (Can be shown with TM)

Formal Descriptions

Formal description of M_B , where $L(M_B) = B$.

- $\blacktriangleright \quad Q = \{q_0, ..., q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$
- ► $\Sigma = \{0, 1, \#\}$
- ► $\Gamma = \{0, 1, \#, x, \sqcup\}$
- ▶ δ:...

OR state diagram.

Implementation-level Descriptions

- Let $M_B =$ "On input string w:
 - 1. Until # is read.
 - 2. Remember the symbol read, write *x*.
 - 3. Move right until # or \sqcup seen.
 - 4. If \sqcup , reject.
 - 5. Move right while *x* seen.
 - 6. If symbol read is \Box or not remembered symbol, *reject*.
 - 7. Write x.
 - 8. Move left until #.
 - 9. Move left until x.
- 10. Move right.
- 11. Move right until something other than x is read.
- 12. If symbol read is ⊔, accept. Otherwise, reject."

High-level Descriptions

Let $M_B =$ "On input string w:

- 1. If there is no #, *reject*.
- 2. For each symbol left of the *#*, match against same position right of the *#*. If there is a mismatch, *reject*.
- 3. If there are extra non-blank symbols right of the #, *reject*.
- 4. accept."

Multitape Machines

For a k tape machine:

 $\delta : \, Q \times \Gamma^k \to \, Q \times \Gamma^k \times \{L,R,S\}^k$

Multitape Machines

Theorem 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof?

Variants

Nondeterministic Machines

$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$

Variants

Nondeterministic Machines

Theorem 3.16

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof?

Algorithms

The Church-Turing Thesis

Figure 3.22

Our *intuitive notion of algorithms* is equal to *Turing machine algorithms*.

Sample problem

Let $A = \{\langle G \rangle | G \text{ is a connected undirected graph } \}$.

Is A decidable?

Sample problem

Let $A = \{ \langle G \rangle | G \text{ is a connected undirected graph } \}.$

Is A decidable?

Let M = "On input $\langle G \rangle$, the encoding of a graph:

- 1. Select the first node of G and mark it.
- 2. Repeat the following state until no new nodes are marked:
- 3. For each node in *G*, mark it if it is attached by an edge to a node that is already marked.
- 4. Scan all nodes of *G* to determine whether they are all marked. If the are *accept*; otherwise *reject*."

CGL STOP HERE

Decidability, a.k.a. Recursiveness

L is (Turing-)decidable if there is a TM M s.t.

- $w \in L \Rightarrow M$ halts on w in state q_{accept} .
- $w \notin L \Rightarrow M$ halts on w in state q_{reject} .
- Other common terminology
 - Recursive = decidable
 - Recursively enumerable (r.e.) = Turing-recognizable
 - Because of alternate characterizations as sets that can be defined via certain systems of recursive (self-referential) equations.

Turing Machines

Objective: Define a computational model that is

General-purpose: (as powerful as programming languages)

Formally Simple:

(we can prove what cannot be computed)

The Origins of Computer Science

Alan Mathison Turing

"On Computable Numbers, with an Application to the Entscheidungsproblem" 1936

CF also

- David Hilbert "Mathematical Problems" 1900
- Kurt Gödel

"On Formally Undecidable Propositions" 1931

Alonzo Church

"An Unsolvable Problem of Elementary Number Theory" 1936

Basic Turing Machine

Example

Claim: $L = \{a^n b^n c^n : n \ge 0\}$ is decidable.

Questions

- Does every TM recognize some language?
- Does every TM decide some language?
- How many Turing-recognizable languages are there?
- How many decidable languages are there?

The Church-Turing Thesis

Reading: Sipser §3.2, §3.3.

Computability

"Computability"

- Defined in terms of Turing machines
- Computable = recursive/decidable (sets, functions, etc.)
- In fact an abstract, universal notion
- Many other computational models yield exactly the same classes of computable sets and functions
- Power of a model = what is computable using the model (extensional equivalence)
- Not programming convenience, speed (for now...), etc.
- All translations between models are constructive

TM Extensions That Do Not Increase Its Power

TMs with a 2-way infinite tape, unbounded to left and right

$$\cdots \ \sqcup \ a \ b \ a \ a \ \cdots$$

Proof that TMs with 2-way infinite tapes are no more powerful than the 1-way infinite tape variety.

"Simulation." Convert any 2-way infinite TM into an equivalent 1-way infinite TM with a "two-track tape."

Recall the Formal Definition of a TM:

A (deterministic) **Turing Machine (TM)** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states, containing
 - the start state q₀
 - the accept state q_{accept}
 - ► the reject state q_{reject} (≠ q_{accept})
- Σ is the input alphabet
- Γ is the tape alphabet
 - Contains Σ
 - Contains "blank" symbol $\sqcup \in \Gamma \Sigma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function.

Formalizing the Simulation of 2-way infinite tape TM

Formally, $\Gamma' = (\Gamma \times \Gamma) \cup \{\$\}.$

M' includes, for every state q of M, two states:

 $\langle q,1
angle \sim$ "q, but we are working on upper track"

 $\langle q,2
angle \sim$ "q, but we are working on lower track"

e.g. If $\delta_M(q, \sigma) = (q', \sigma', L)$ then $\delta_{M'}(\langle q, 1 \rangle, \langle \sigma, \tau \rangle) = (\langle q', 1 \rangle, \langle \sigma', \tau \rangle, R)$. Also need transitions for:

Lower track

- U-turn on hitting endmarker
- Formatting input into "2-tracks"

Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- This lecture, some of next lecture, assignment 6

High-Level Description

- Does not refer to specific computational model
- Starting next time!

More extensions

Adding multiple tapes does not increase power of TMs

(Convention: First tape used for I/O, like standard TM; Second tape is available for scratch work)

Simulation of multiple tapes

- Simulate a k-tape TM by a one-tape TM whose tape is split (conceptually) into 2k tracks:
 - k tracks for tape symbols
 - k tracks for head position markers (one in each track)

(Sipser does a different simulation.)
Simulation steps

▶ To simulate **one move** of the *k*-tape TM:

Simulation steps

- ► To simulate **one move** of the *k*-tape TM:
 - Start with the head on the left endmarker
 - Scan down the tape, remembering in the finite control the symbols "scanned" by the k heads
 - Scan back up the tape, revising each track in the vicinity of its head marker
 - Return the head to the left endmarker

Speed of the simulation

Note that the "equivalence" in ability to compute functions or decide languages does not mean comparable speed.

e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a **linear**-time 2-tape decider.

Speed of the simulation

Note that the "equivalence" in ability to compute functions or decide languages does not mean comparable speed.

e.g. A standard TM can decide $L = \{w \# w : w \in \Sigma^*\}$ in time $\sim |w|^2$, but there is a **linear**-time 2-tape decider.

- Let $T_M : \Sigma^* \to \mathcal{N}$ measure the amount of time a decider M uses on an input. That is, $T_M(w)$ is the number of steps TM M takes to halt on input w.
- General fact about multitape to single-tape slowdown:

Theorem: If *M* is a multitape TM that takes time T(w) when run on input *w*, then there is a 1-tape machine *M'* and a constant *c* such that *M'* simulates *M* and takes at most $cT(w)^2$ steps on input *w*.

Nondeterministic TMs

- Like TMs, but $\delta : Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
- It mainly makes sense to think of NTMs as recognizers

 $L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize $\{w : w \text{ is a binary notation for a product of two integers } \geq 2\}$

Nondeterministic TMs

- Like TMs, but $\delta : Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
- It mainly makes sense to think of NTMs as recognizers

 $L(M) = \{w : M \text{ has some accepting computation on input } w\}$

Example: NTM to recognize

 $\{w : w \text{ is a binary notation for a product of two integers} \geq 2\}$

- 1. Write any binary numeral (except 0 or 1) [N.D.]
- 2. Write ⊔
- 3. Write any binary numeral (except 0 or 1) [N.D.]
- 4. Multiply
- 5. Compare product to the input; halt if they are equal, go into an infinite loop if not.

NTMs recognize the same languages as TMs

- ► Given a NTM M, we must construct a TM M' that determines, on input w, whether M has an accepting computation on input w.
- M' systematically tries
 - all one-step computations
 - all two-step computations
 - all three-step computations

▶ ...

39/68

Enumerating computations

- There is a bounded number of k-step computations, for each k. (because for each configuration there is only a constant number of "next" configurations in one step)
- Ultimately M' either:
 - discovers an accepting computation of M, and accepts itself,

or

searches forever, and does not halt

In More Detail

- Suppose that the maximum number of different transitions for a given (q, σ) is b.
- Number those transitions 1,..., b (or less)
- Any computation of k steps is determined by a sequence of k numbers ≤ b (the "nondeterministic choices").
- ► How *M*′ works: 3 tapes

#1 Original input to $M \sqcup$

#2 Simulated tape of M

#3 1213 $\sqcup \cdots$ Nondeterministic choices for M'

41/68

Simulating one step of M

- Each major phase of the simulation by M' is to simulate one finite computation by M, using tape #3 to resolve nondeterministic ambiguities.
- Between major phases, M'
 - erases tape #2 and copies tape #1 to tape #2
 - Replaces string in {1,..., b}* on tape #3 with the lexicographically next string to generate the next set of nondeterministic choices to follow.
- Claim: L(M') = L(M)
- Q: Slowdown?

Equivalent Formalisms

Many other formalisms for computation are equivalent in power to the TM formalism:

- TMs with 2-dimensional tapes
- Random-access TMs
- General Grammars
- 2-stack PDAs, 2-counter machines
- Church's λ-calculus (μ-recursive functions)
- Markov algorithms
- Your favorite high-level programming language (C, Lisp, Java, ...)

►

General Grammars

- Like context-free grammars, except that if $u \rightarrow v$ is a rule, then u may be any string containing a nonterminal.
- So the rule AXY → AYX where A, X, Y ∈ V, "means" that the two-symbol substring XY can be replaced by YX whenever it appears with an A to its left.

General Grammars

Example of a General Grammar

A grammar to generate $\{a^n b^n c^n : n \ge 0\}$.

 $\Sigma=\{a,b,c\} \quad V=\{A,B,C,A',B',C',S\}$

- A, B, C are "aliases" for the terminal symbols a, b, c.
- Only a single occurrence of A', B', or C' can be in the string being derived
- It "crawls" from right to left, transforming nonterminal symbols into terminals.

Rules for $a^n b^n c^n$

►
$$S \to ABCS$$
 $S \to C'$ $S \to \varepsilon$
(Thus $S \stackrel{*}{\Rightarrow} (ABC)^n C'$ for any $n \ge 0$)
► $CA \to AC$ $BA \to AB$ $CB \to BC$

(Any inversions of the proper order can be repaired)

$$\blacktriangleright CC' \to C'c \qquad CC' \to B'c$$

(The *c*-transformer can crawl to the left, and turn into a *b*-transformer)

$$\blacktriangleright \ BB' \to B'b \qquad BB' \to A'b$$

 $\blacktriangleright AA' \to A'a \qquad A' \to \varepsilon$

The only way to get a string of **terminals** yields one of the form $a^n b^n c^n$.

Curtis Larsen (Utah Tech University)

Grammars and Turing Machines are Equivalent

Theorem: A language is generated by a grammar if and only if it is Turing-recognizable.

Proof:

1. *L* is generated by a grammar \Rightarrow *L* is Turing-recognizable **Pf:** Let L = L(G), *G* a grammar. To construct a NTM *M* such that L(M) = L, construct *M* so that

M nondeterministically carries out a derivation

 $S = w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \cdots$, checking each step to see if $w_i = w$.

L Turing-recognizable \Rightarrow L is generated by a grammar.

L is recognized by a TM M ⇒ L is generated by a grammar G
 Pf: Without loss of generality, we assume that if M halts having started on input w, right before halting it erases its tape.
 G will simulate a backwards computation by M. The intermediate strings will be configurations \$uqσv\$.

Rules of the Grammar

►
$$S \to \$q_{accept}\$$$

• If
$$\delta(q, \sigma) = (q', \sigma', R)$$
, then *G* has
 $\sigma'q' \rightarrow q\sigma$
 $\sigma'q'\$ \rightarrow q\$$, if $\sigma = \sqcup$

• If
$$\delta(q, \sigma) = (q', \sigma', L)$$
, then *G* has
 $q'\tau\sigma' \rightarrow \tau q\sigma$ for each $\tau \in \Sigma$
 $q'\tau\$ \rightarrow \tau q\sigma\$$, if $\sigma' = \sqcup$
 $\$q'\sigma' \rightarrow \$q\sigma$

Finally, $\$ \to \varepsilon$ and, if q_0 is the start state of the TM, $q_0 \to \varepsilon$

Reduction of TMs to 2-CMs

A 2-counter machine (2-CM) has:

- A finite-state control
- ► Two counters, i.e., C1 and C2, which are registers containing integers ≥ 0 with only 3 operations:
 - Add 1 to C1/C2
 - Subtract 1 from C1/C2
 - ▶ Is C1/C2 = 0?

Theorem: For any TM, there is an equivalent 2-CM, in the sense that if you start the 2-CM with an encoding of the TM tape in its counters it will eventually halt with an encoding of what the TM computes.

Simulating a TM tape with 2 pushdown stores: Split the tape at the head position into two stacks

Moving TM head to left \equiv Pop from stack #1 Push onto stack #2

Moving TM head to right \equiv Pop from stack #2 Push onto stack #1

Change scanned symbol \equiv Change top of stack #1

(So 2-PDSs are as powerful as TMs)

Simulating One Stack with Two Counters: Think of the stack as a number in a base $= |\Sigma| + 1$

[Assume ≤ 9 stack symbols]

- Pop the stack \equiv Divide by 10 and discard the remainder
- Push $a_9 \equiv Multiply by 10 and add 9$
- Is stack top = a_3 ? \equiv Is counter mod 10 = 3?
- \rightarrow All of these can be calculated using a second counter.

Simulating Four Counters With Two: $(p, q, r, s) \rightarrow 2^p 3^q 5^r 7^s$

Add 1 to $C1$	=	$p \leftarrow p + 1$ Double $C1'$
ls $C3 \neq 0$?	=	$r \neq 0$? Does 5 divide $C1'$ evenly?
Subtract 1 from s	≡	Divide $C1'$ by 7

The Church-Turing Thesis

The equivalence of each to the others is a mathematical theorem.

That these **formal models** of algorithms capture our **intuitive notion** of algorithms is the **Church-Turing Thesis**.

(Church's thesis = partial recursive functions, Turing's thesis = Turing machines)

This is an extramathematical proposition, not subject to formal proof.

Decidability and a Universal Turing Machine

Reading: Sipser §4.1.

Another TM Variant: Enumerators

Def: A TM M *enumerates* a language L if M, when started from a blank tape, runs forever and "emits" all and only the strings in L.

(For example, by writing the string on a special tape and passing through a designated state.)

$Recognizable \equiv enumerable$

Theorem: *L* is Turing-recognizable iff *L* is enumerated by some TM. **Proof:**

- (⇒) Suppose L(M) = L. We want to construct a TM M' that enumerates L.
 - M' dovetails all of the computations by M:
 - 1. Do 1 step of M's computation on w_0
 - **2**. Do 2 steps of M on w_0 and w_1
 - 3. Do 3 steps on each of w_0, w_1, w_2

where $w_0, w_1, \ldots =$ lexicographic enumeration of Σ^* .

Outputting any strings w_i whose computations have accepted.

Recognizable \equiv enumerable, finis

(\Leftarrow) Conversely, suppose *M* enumerates *L*. We want to show that *L* is RE.

Given w, run M on the blank tape. Every time M passes through state q (the "enumeration state") pause to see if w is on the output tape and halt if it is.

The language **recognized** by this algorithm is exactly the language **enumerated** by M. QED.

- The Turing-decidable sets are usually called recursive because they can be computed using certain systems of recursive equations, rather than via TMs.
- The Turing-recognizable sets are usually called recursively enumerable, i.e., "computably enumerable."

Enumerable in order \equiv decidability

Theorem: *L* is decidable iff *L* is enumerable in lexicographic order.

(lexicographic order has shorter strings before longer, and alphabetic order among strings of the same length)

Proof of \Rightarrow : If *L* is decidable, then to enumerate *L* in order, generate all of Σ^* in order and test each string for membership in *L*, enumerating those that are members.

Almost proof of \Leftarrow : to test if $w \in L$, enumerate *L* and wait until either *w* or a lexically later string is enumerated. ????

Decidability

- Recall that a language L ⊆ Σ* is decidable if there is a TM that always halts when started on an input in Σ*, in either q_{accept} if w ∈ L or q_{reject} if w ∉ L.
- Proposition: Every regular language is decidable.
 Proof: (By "coding" a DFA as a TM.)

Asking questions about arbitrary finite automata

- Q: What if the DFA D is part of the input? That is, can we design a single TM that, given two inputs, D and w, decides whether D accepts w?
 - ▶ The TM needs to use a fixed alphabet & state set for all inputs *D*, *w*.

Q: How to represent $D = (Q, \Sigma_D, \delta, q_0, F)$ and w? List each component of the 5-tuple, separated by |'s.

- Represent elements of Q as binary strings over {0,1}, seperated by ,'s.
- Represent elements of Σ_D as binary strings over {0,1}, seperated by ,'s.
- Represent δ : Q × Σ_D → Q as a sequence of triples (q, σ, q'), separated by ,'s, etc.

We denote the encoding of D and w as $\langle D, w \rangle$.

A "Universal" algorithm for deciding regular languages

▶ Proposition: A_{DFA} = {⟨D, w⟩ : D a DFA that accepts w} is decidable.

Proof sketch:

- First check that input is of proper form.
- Then simulate D on w. Implementation on a multitape TM:
 - Tape 2: String w with head at current position (or to be precise, its representation).
 - **Tape 3:** Current state q of D (i.e., its representation).
- Could work with other encodings, e.g., transition function as a matrix rather than list of triples.

Representation independence

- General point: Notions of computability (e.g. decidability and recognizability) are independent of data representation.
 - A TM can convert any reasonable encoding to any other reasonable encoding.
 - We will use $\langle \cdot \rangle$ to mean "any reasonable encoding".
 - We will revisit representation issues when we discuss computational speed.
 - For the moment we are interested only in whether problems are decidable, undecidable, recognizable, etc., so we can be content knowing that there is **some** representation on which an algorithm could work.

Describing Turing Machines

Formal Description

- 7-tuple or state diagram
- Most of the course so far

Implementation Description

- Prose description of tape contents, head movements
- Previous lecture and today's lecture so far

High-Level Description

- Does not refer to specific computational model, data representation
- From now on!

More Decidable Problems

- $\{\langle R, w \rangle : R \text{ is a regular expression that generates } w\}.$
- $\{\langle X \rangle : X \text{ is a DFA/NFA/RE such that } L(X) = \emptyset\}.$
- $\{\langle X \rangle : X \text{ is a DFA/NFA/RE such that } |L(X)| = \infty \}.$
- $\{\langle M, w \rangle : M \text{ is a PDA that accepts } w\}.$
- Every context-free language.

A Universal Turing machine

▶ **Theorem:** There is a Turing machine U, such that when U is given $\langle M, w \rangle$ for any TM M and w, U produces the same result (accept/reject/loop) as running M on w.

Proof: Initially,

- First tape contains (M), including in particular its transition function δ_M.
- Second tape contains $\langle w \rangle$.
- Third tape contains $\langle q_{\text{start}} \rangle$.
- Simulate steps of *M* by multiple steps of *U*.

(Brief return to implementation description.)

 \Rightarrow Turing machines can be "programmed".

Consequences of the existence of Universal Turing Machines

- ► Corollary: A_{TM} = {⟨M, w⟩ : M accepts w} is Turing-recognizable (r.e.).
- **Corollary:** $HALT_{TM} = \{ \langle M, w \rangle : M \text{ eventually halts on } w \}$ ("The Halting Problem") is Turing-recognizable.
- Corollary: "The Turing Machines that halt on some input are an r.e. set" (What does this mean?)
- **Q:** What about $\{\langle M, w, n \rangle : M \text{ halts on } w \text{ in at most } n \text{ steps} \}$?
- Q: Are these sets decidable?
- Q: Are there undecidable languages?

Three basic facts on decidability vs. recognizability

1. If *L* is recursive, then *L* is r.e. **Proof:**
Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

Proof:

If *M* decides *L*, then a machine can recognize *L* by running *M*, and then going into an infinite loop if *M* would have halted in the q_{reject} state.

2. If *L* is recursive then so is \overline{L} .

Proof:

Three basic facts on decidability vs. recognizability

1. If L is recursive, then L is r.e.

Proof:

If *M* decides *L*, then a machine can recognize *L* by running *M*, and then going into an infinite loop if *M* would have halted in the q_{reject} state.

2. If *L* is recursive then so is \overline{L} .

Proof:

. . .

A machine can decide \overline{L} by running M and then giving a "no" answer when M would give "yes" and *vice versa*.

3. *L* is recursive if and only if both *L* and \overline{L} are r.e. **Proof:**