
CS	4300:	Artificial	Intelligence
Assignment:	A*	Search	Agent
Create	an	agent	to	perform	in	the	MiniGrid	-	MultiRoom	environment,	(minigrid	source	code).

The	performance	measure	used	by	this	assignment	to	assess	the	quality	of	your	agent	will	be	the	episode
total	reward,	averaged	over	at	least	25	episodes.	An	agent	that	doesn’t	complete	some	episodes	(times	out	/
runs	out	of	memory	/	crashes),	will	give	given	an	average	score	of	0.

After	your	report	and	code	are	reviewed,	assignment	grades	will	be	assigned.	The	maximum	possible	score
will	be	controlled	by	the	agent’s	performance	measure.	See	the	table	below.

Use	the	GitHub	repository	available	for	this	course	to	store	your	solutions.	Make	a	directory	named
multiroom-astar-search ,	and	store	your	agent	in	 multiroom-astar-search/agent1.py .

Note	that	you	are	to	implement	an	agent	that	has	a	model	of	the	environment	and	uses	the	A-star	search
algorithm	we	have	discussed.	DO	NOT	make	a	reinforcement	learning	agent,	or	use	some	other	algorithms
for	these	agents.

The	model	must	contain	at	least	these	methods:

ACTIONS(s)	->	list	of	actions	allowed	in	state	s
RESULT(s,	a)	->	state	that	results	from	action	a	in	state	s
GOAL-TEST(s)	->	true	or	false,	depending	on	the	state	s
STEP-COST(s,	a,	s1)	->	cost	of	taking	action	a	in	state	s	and	ending	up	in	state	s1
HEURISTIC(s)	->	estimated	cost	of	reaching	a	goal	state	from	state	s.

We	discussed	in	class	that	using	graph	search	would	probably	be	better	than	tree-like	search.

Create	a	short	report,	containing	these	elements:

An	explanation	of	the	heuristics	tried,	which	one	was	selected	as	the	best,	and	why	it	was	selected.
The	average	performance	of	your	agent	on	each	of	the	following	environments:	 MiniGrid-MultiRoom-N2-
S4-v0 ,	 MiniGrid-MultiRoom-N4-S5-v0 ,	and	 MiniGrid-MultiRoom-N6-S6-v0

Required	Submissions
Code	submitted	to	github.
A	PDF	file	containing	your	report	submitted	to	Canvas.

Performance	Measure	Expectations
MiniGrid-MultiRoom-N6-S6-v0
Average	Score Maximum	Possible	Grade
a	<	0.50 50%
0.50	<=	a	<	0.60 65%
0.60	<=	a	<	0.68 75%
0.68	<=	a	<	0.69 80%
0.69	<=	a	<	0.70 85%
0.70	<=	a	<	0.71 90%
0.71	<=	a	<	0.72 95%
a	>=	0.72 100%

Hints	and	Resources
import	my_minigrids 	to	make	a	variety	of	environment	configurations	available.	They	have	the	form
MiniGrid-MultiRoom-N{}-S{}-v0 ,	where	N2-N9	and	S4-S9	are	available.	NX	will	have	X	rooms,	and	SY	will
have	rooms	at	most	YxY	in	size.	my_minigrids.py

As	discussed	in	class,	the	unique	state	information	is:	agent	row,	agent	column,	agent	direction,	and
(door	row,	door	column,	door	state)	for	every	door.	Everything	else	in	the	environment	should	never

https://minigrid.farama.org/environments/minigrid/MultiRoomEnv/
https://github.com/Farama-Foundation/MiniGrid
https://computing.utahtech.edu/cs/4300/assignments/my_minigrids.py


change.	This	is	useful	for	generating	the	unique	key	per	state,	if	you	do	graph	search.

There	is	a	builtin	PriorityQueue	in	Python.	If	you	use	it,	I	recommend	using	a	class	for	your	nodes,	with
the	 __lt__ 	operator	overloaded	to	correctly	sort	nodes	for	the	A-star	algorithm.

Try	to	write	the	A-star	code	such	that	it	could	work	with	any	model	that	supported	the	methods	listed
above.

Use	manual_control.py	found	in	the	MiniGrid	repository	to	manually	run	the	agent.	I	made	a	personal	copy
of	it	and	modified	the	code	to	help	me	explore	the	structure	of	the	observations.

constants.py	Can	help	to	interpret	the	contents	of	each	grid	location.

The	observation	is	a	dictionary.	The	 observation["image"] 	contains	a	3-D	numpy	array.	The	first	index	is
the	COLUMN,	the	second	index	is	the	ROW,	and	the	third	index	is	0-contents	of	grid	cell,	1-color	of	grid
cell,	2-state	of	grid	cell.

The	Fully	Observable	environment	wrapper	is	necessary	to	have	the	required	information	for	search	in	the
observation.

In	the	RESULT	method,	when	moving	the	agent’s	location,	it’s	OK	to	set	the	contents	of	the	grid	cell	the
agent	is	moving	from	to	be	“empty”.

https://docs.python.org/3/library/queue.html#queue.PriorityQueue
https://github.com/Farama-Foundation/Minigrid/blob/master/minigrid/manual_control.py
https://github.com/Farama-Foundation/Minigrid/blob/master/minigrid/core/constants.py
https://minigrid.farama.org/api/wrappers/#fully-obs

