
Towards Faster Speculative
Execution AttacksAdvisor: Ren Quinn - CS Department

Damen Maughan
B.S. Computer Science

B.S. Applied Computational Math

Background - Spectre

- A vulnerability in modern processors (namely x86) is described, called "Spectre".
- It takes advantage of a processor's speculative execution.
- Malicious, transient instructions are speculatively executed.
- These instructions are reverted by the processor. However, they have a
 noticeable effect on the cache state of the CPU.

Using Spectre, touch
some secret data. Then,

look back at your
"footprints" to figure out

what it was.

Background - Cache Attacks

- Start with nothing in cache

- Access secret data, touch cache

- CPU takes the secret data away

- Check cache to see what it was

- Initially, we FLUSH an array that we control out of the cache.

- Using the Spectre vulnerability, access a secret value through speculative execution.

- Access a position in our array using that value as an index. This will LOAD it into cache.

- At this point, the state will be reset and we will lose access to our secret value.

- Then, time how long it takes to access each index in the array.

- The position that responds the fastest corresponds with the secret value.5

SPECTRE STRATEGY (OLD)

PERFORMANCE METRICS

The method used in Spectre is functional, and gets their point
across in an understandable manner. As a cost for that simplicity,
it is rather slow.

OPTIMIZED STRATEGY (NEW)

By reading individual bits, we significantly reduce the amount of
cache misses, and as such, increase the overall speed of data
reading. As a cost for this speed, it is quite complex.

zzz

The next day...

A B

A B
Even if we don't remember, we can still trace our steps.

IN CACHE NOT IN CACHE

Time (Clock Cycles)
C

o
u
n
t

(L
o
g
)

A = Array of size 256
s = secret value (1 byte)

victim_function(x):
 if x is valid:
 return s

v = victim_function(x)
A[v]

check all indexes A[i]

slowest index i = v

A = Array of size 2*8
s = secret value (1 byte)

victim_function(x):
 if x is valid:
 return s

v = victim_function(x)
for bit in v:
 A[bit_i][bit]

for each A_b in A:
 check each position A_b[i]

for each bit in V:
 slowest A_b = bit

256 possible values

If valid, return secret.
However, s is returned
speculatively anyway

Grab secret value

"Write it down" by
reading A[v] into cache

Now, CPU makes us
forget what it was.

Time how long it takes
to access each index
(each possible value)When one of them takes

longer than the others,
that position corresponds
to our secret value!

The conditional branch
which we are exploting

Now, CPU makes us
forget what it was.

8 arrays,
2 possible values each

Same victim function
and exploit

Use the individual bits
of the secret value to
read 8 positions into
cache

Then, time all
8 arrays

Slowest value in each
array becomes that bit's
value

Re-assemble bits
into secret value!

Time to Access Values IN vs. OUT of Cache

"Spectre Attacks: Exploiting Speculative Execution", Paul Kocher et. al.

Start Cache (empty)

A

Transient

Secret = yes/no

- if yes, load red:

- if no, load blue:

Measure
- Test red
- Test blue

Time to read:

Took longer

So, the secret was "yes"

Anatomy of a FLUSH + RELOAD
 Cache Attack:

0.98

0.96

0.94

0.92

0.90

0.88

A
cc

u
ra

cy

1

0
20 40 60 80 100

Ti
m

e
 (

s)

2

3

4

5

Samples

0.98

0.96

0.94

0.92

0.90

0.88

A
cc

u
ra

cy

1

0
20 40 60 80 100

Ti
m

e
 (

s)

2

3

4

5

Samples

