

Database Foundations

3-9 Validating Data Using Normalization

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Objectives

This lesson covers the following objective:

Use normalization to validate data

Why Should You Normalize Data?

- Reduce redundant data in the existing design
- Increase the integrity of data and the design's stability
- Eliminate other types of data inconsistencies and anomalies
- Identify missing tables, columns, and constraints

What Is Normalization?

- Normalization is a relational database concept, but its principles apply to data modeling.
- Rules:

Rule	Description
First Normal Form (1NF)	All attributes must be single-valued.
Second Normal Form (2NF)	An attribute must be dependent on its entity's entire UID.
Third Normal Form (3NF)	No non-UID attributes can be dependent on another non-UID attribute.

Types of Normal Forms

Main types of normal forms introduced by E.F. Codd:

- First Normal Form (1NF)
- Second Normal Form (2NF)
- Third Normal Form (3NF)
- Boyce Codd Normal Form (BCNF)

First Normal Form (1NF)

All attributes must be single-valued.

Second Normal Form (2NF)

An attribute must be dependent on its entity's entire UID.

The Bank Location attribute is dependent on BANK, not on ACCOUNT. Therefore, this is not in 2NF. Move the attribute to the BANK entity.

Third Normal Form (3NF)

Each attribute depends only on the UID of its entity.

Create a new ORDER ITEM entity. Move the Line Item ID, Quantity, and Price attributes to the new entity, and then create an identifying relationship.

Boyce Codd Normal Form

- A table is in Boyce-Codd Normal Form (BCNF) if it is in 3NF and if every determinant is a candidate key.
- A candidate key can be defined as an attribute or a combination of attributes that can be uniquely used to identify a record in a table.

First Normal Form (1 NF): Example 1

School Building Code uniquely identifies a row and is called the primary key of the table.

Second Normal Form (2 NF): Example 1

Data pertaining to the school building and department has been split into two tables.

Third Normal Form (3 NF): Example 1

School Building Code	Building Name	Addres	s Departm Code	ent	Department Code		Department Name		Floor Code		
		3 NF									
School Building Code	Building Name	Address	Department Code	Departn Code	nent	Departme Name	ent	Floor Code		Floor Code	Floor Name

The transitive dependencies between the tables are removed.

Normalization Example 2: Unnormalized Data

Ordered by:				Ship to:		Order Date		
Customer ID	:[Ship Via				
Customer Na	omer Name :			Name	:			
Address Line 1 :			Address Line 1					
Address Line 2 :			Address Line 2					
Address Line 3 :			Address Line 3	:				
City, State ZIP) :[,	City, State ZIP		,		
<u>Item ID</u>	<u>Color</u>	<u>Size</u>	<u>Quantity</u>	<u>Description</u>		<u>Price</u>		

Order Total:

DFo 3-9 Validating Data Using Normalization Ordor ID

Normalization Example 2: Transforming to First Normal Form

	ORDER
,	* Order ID
	o Order Date
	o Order Total
	o Customer ID
	o Customer Name
	o Customer Address1
	o Customer Address2
	o Customer Address3
	o Customer City
	o Customer State
	o Customer Zip
	o Ship Via
	o Ship To Name
	oShip To Address1
	oShip To Address2
	oShip To Address3
	o Ship To City
	o Ship To State
	o Ship To Zip
	oltem ID
	o Color
	oSize
	o Quantity
	o Description
	o Price

Normalization Example 2: Transforming to First Normal Form

Normalization Example 2: Transforming to Second Normal Form

ORACLE ACADEMY

Normalization Example 2: Transforming to Third Normal Form

Summary

In this lesson, you should have learned how to use normalization to validate data.

