

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
15-1
Using PL/SQL Initialization Parameters

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Objectives

This lesson covers the following objectives:
• Describe how PLSQL_CODE_TYPE can improve execution

speed
• Describe how PLSQL_OPTIMIZE_LEVEL can improve

execution speed
• Use USER_PLSQL_OBJECT_SETTINGS to see how a

PL/SQL program was compiled

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Purpose

• In many programming environments, fast program
execution is imperative.

• In an earlier lesson, you learned how coding techniques
such as the NOCOPY hint and Bulk Binding can improve
the execution speed of PL/SQL programs.

• Setting PL/SQL initialization parameters can help to make
your PL/SQL programs run even faster.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

What are Initialization Parameters?

• Initialization parameters are used to change the way your
database session interacts with the Oracle server.

• All initialization parameters have a name, a data type, and
a default value.

• They can be used to adjust security, improve
performance, and do many other things.

• Many of them have nothing to do with PL/SQL. In this
lesson, you learn how to use two initialization parameters
that change how your PL/SQL code is compiled.

• Do not confuse initialization parameters with the formal
and actual parameters that we pass to subprograms.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Two PL/SQL Initialization Parameters

• The names of these initialization parameters are:
– PLSQL_CODE_TYPE

– PLSQL_OPTIMIZE_LEVEL

• PLSQL_CODE_TYPE is a VARCHAR2 with possible
values INTERPRETED (the default value) and NATIVE.

• PLSQL_OPTIMIZE_LEVEL is a NUMBER with possible
values 0, 1, 2 (the default), and 3.

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Changing the Value of a Parameter

• You can change any initialization parameter’s value by
executing an ALTER SESSION SQL statement:

• The new parameter value will be used until you log off, or

until you change the value again.

ALTER SESSION SET PLSQL_CODE_TYPE = NATIVE;

CREATE OR REPLACE PROCEDURE run_faster_proc ...;

ALTER SESSION SET PLSQL_CODE_TYPE = INTERPRETED;

CREATE OR REPLACE PROCEDURE run_slower_proc ...;

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE

• If PLSQL_CODE_TYPE is set to INTERPRETED (the
default), your source code is compiled to bytecode format.

• If the parameter value is changed to NATIVE, your source
code will be compiled to native machine code format.

• You don’t need to know what these formats mean or how
they work; the important thing is that native machine
code PL/SQL executes faster than bytecode PL/SQL.

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: Example

• To see the change in performance, we need some PL/SQL
code that takes a long time to execute: 0.02 seconds
doesn't seem much slower than 0.01!

• Let’s compile a long-running procedure using
INTERPRETED (notice how quickly it compiles):
CREATE OR REPLACE PROCEDURE longproc IS
 v_number PLS_INTEGER;
BEGIN
 FOR i IN 1..50000000 LOOP
 v_number := v_number * 2;
 v_number := v_number / 2;
 END LOOP;
END longproc;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: Example

• The compile was quick, but see how long the procedure
takes to run.

• Eleven seconds!
• That's much longer than most of the procedures and

functions you have been writing.

BEGIN
 longproc;
END;

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: Example

• Let’s compile it again using NATIVE:

• Notice the procedure takes longer to compile than before

(0.08 seconds compared to 0.02 seconds).

ALTER SESSION SET PLSQL_CODE_TYPE = NATIVE;

CREATE OR REPLACE PROCEDURE longproc IS
 v_number PLS_INTEGER;
BEGIN
 FOR i IN 1..50000000 LOOP
 v_number := v_number * 2;
 v_number := v_number / 2;
 END LOOP;
END longproc;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: Example

• But now let’s execute the NATIVE mode procedure:

• The execution is about twice as fast in this case (5.7

seconds compared to 11.34 seconds).
• NATIVE mode will always execute faster than
INTERPRETED mode, and depending on the
source code, it may execute much faster.

BEGIN
 longproc;
END;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: A Second
Example

Let’s compile and execute an even longer procedure that
includes a SQL statement:
ALTER SESSION SET PLSQL_CODE_TYPE = INTERPRETED;

CREATE OR REPLACE PROCEDURE sqlproc IS
 v_count PLS_INTEGER;
BEGIN
 FOR i IN 1..500000 LOOP
 SELECT COUNT(*) INTO v_count FROM countries;
 END LOOP;
END sqlproc;

BEGIN
 sqlproc;
END;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using PLSQL_CODE_TYPE: A Second
Example

• Now compile and execute it using NATIVE:

• Not much faster this time, is it? Why not?

ALTER SESSION SET PLSQL_CODE_TYPE = NATIVE;

CREATE OR REPLACE PROCEDURE sqlproc IS
 v_count PLS_INTEGER;
BEGIN
 FOR i IN 1..500000 LOOP
 SELECT COUNT(*) INTO v_count FROM countries;
 END LOOP;
END sqlproc;

BEGIN
 sqlproc;
END;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

NATIVE Compilation and SQL
Statements

• Compiling a PL/SQL program with PLSQL_CODE_TYPE =
NATIVE creates native PL/SQL code, but not native SQL
code (there’s no such thing!).

• So the PL/SQL Engine executes faster, but SQL statements
execute at the same speed as before.

• And SQL statements usually take far longer to execute
than PL/SQL statements, especially when the tables
contain thousands of rows.

• To speed up SQL statements, you use other techniques,
such as Bulk Binding and choosing the correct indexes for
your tables.

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Does your PL/SQL Program Contain
Useless Code?

• Examine this code:

• Silly, isn’t it?
• Of course, you would never write useless lines of code

that can never be executed, would you?
• Look at the next example:

CREATE OR REPLACE PROCEDURE obviouslybadproc IS
 v_number PLS_INTEGER := 1;
BEGIN
 IF v_number = 1 THEN
 DBMS_OUTPUT.PUT_LINE(‘This will always be displayed');
 ELSE
 DBMS_OUTPUT.PUT_LINE('This will never be displayed');
 END IF;
END obviouslybadproc;

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Does your PL/SQL Program Contain
Useless Code?

• Not quite so obvious now, is it?
• In large, complex PL/SQL programs, it is all too easy to write

code that can never be executed, or exceptions that can
never be raised.
CREATE OR REPLACE PROCEDURE notsoobviousproc IS
 v_number PLS_INTEGER;
BEGIN
 FOR i IN REVERSE 1..50 LOOP
 v_number := 50 – i;
 IF MOD(i,v_number) > 25 THEN
 DBMS_OUTPUT.PUT_LINE(‘Could this ever be displayed?');
 ELSE
 DBMS_OUTPUT.PUT_LINE('This will be displayed');
 END IF;
END notsoobviousproc;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Does your PL/SQL Program Contain
Useless Code?

• Unnecessary code can slow down both creating and
executing the program.

CREATE OR REPLACE PROCEDURE notsoobviousproc IS
 v_number PLS_INTEGER;
BEGIN
 FOR i IN REVERSE 1..50 LOOP
 v_number := 50 – i;
 IF MOD(i,v_number) > 25 THEN
 DBMS_OUTPUT.PUT_LINE(‘Could this ever be displayed?');
 ELSE
 DBMS_OUTPUT.PUT_LINE('This will be displayed');
 END IF;
END notsoobviousproc;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

The PLSQL_OPTIMIZE_LEVEL
Initialization Parameter

• PLSQL_OPTIMIZE_LEVEL can be used to control what
the PL/SQL Compiler does with useless code, as well as
giving other performance benefits.

• Its value must be an integer between 0 and 3, inclusive.
• The higher the value, the more effort the compiler makes

to optimize the code for execution.
• The optimizing compiler is enabled to level 2 by default.

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

The PLSQL_OPTIMIZE_LEVEL
Initialization Parameter

The effects are:
• With PLSQL_OPTIMIZE_LEVEL = 0, the compiled

code will run more slowly, but it will work with older
versions of the Oracle software.

• This is similar to creating a document using Microsoft
Word 2007, but saving it in Word 97-2003 format.

• With PLSQL_OPTIMIZE_LEVEL = 1, the compiler
will remove unnecessary code and exceptions from the
executable code, such as the useless code in the two
examples on previous slides.

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

The PLSQL_OPTIMIZE_LEVEL
Initialization Parameter

• The order of the source code is not typically changed.
• With PLSQL_OPTIMIZE_LEVEL = 2, (the default),

the compiler will remove useless code as before, but will
also sometimes move code to a different place if it will
execute faster there.

• For example, if a frequently-called procedure in a large
package is coded near the end of the package body, the
compiler will move it nearer to the beginning.

• Your source code is never changed, only the compiled
code.

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

The PLSQL_OPTIMIZE_LEVEL
Initialization Parameter

• PLSQL_OPTIMIZE_LEVEL = 3 gives all the benefits
of values 1 and 2, plus subprogram inlining.

• This means that the compiled code of another called
subprogram is copied into the calling subprogram, so that
only one compiled unit of code is executed.

• The source code itself is not changed, it is only the
executable code that is optimized.

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

PLSQL_OPTIMIZE_LEVEL: An Example

• The compiled code of CALLINGPROC now contains the
code of both subprograms, as if it had been written as part
of CALLINGPROC instead of as a separate subprogram.

• CALLEDPROC also still exists as a separate subprogram and
can still be called from other places.

CREATE OR REPLACE PROCEDURE calledproc IS BEGIN...END calledproc;

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 3;

CREATE OR REPLACE PROCEDURE callingproc IS BEGIN
 ...
 calledproc;
 ...
END;

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Using
USER_PLSQL_OBJECT_SETTINGS

You can see how your PL/SQL programs were compiled by
querying the USER_PLSQL_OBJECT_SETTINGS Data
Dictionary view:
SELECT name, type, plsql_code_type AS CODE_TYPE,
 plsql_optimize_level AS OPT_LVL
 FROM USER_PLSQL_OBJECT_SETTINGS WHERE name = 'TESTPROC';

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1;

CREATE OR REPLACE PROCEDURE testproc ...END testproc;

-- or ALTER PROCEDURE testproc COMPILE;

SELECT name, type, plsql_code_type AS CODE_TYPE,
 plsql_optimize_level AS OPT_LVL
 FROM USER_PLSQL_OBJECT_SETTINGS WHERE name = 'TESTPROC‘;

Using
USER_PLSQL_OBJECT_SETTINGS

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Terminology

Key terms used in this lesson included:
• PLSQL_CODE_TYPE
• PLSQL_OPTIMIZE_LEVEL
• PL/SQL Initialization Parameter
• USER_PLSQL_OBJECT_SETTINGS

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S15L1
Using PL/SQL Initialization Parameters

Summary

In this lesson, you should have learned how to:
• Describe how PLSQL_CODE_TYPE can improve execution

speed
• Describe how PLSQL_OPTIMIZE_LEVEL can improve

execution speed
• Use USER_PLSQL_OBJECT_SETTINGS to see how a

PL/SQL program was compiled

27

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	What are Initialization Parameters?
	Two PL/SQL Initialization Parameters
	Changing the Value of a Parameter
	Using PLSQL_CODE_TYPE
	Using PLSQL_CODE_TYPE: Example
	Using PLSQL_CODE_TYPE: Example
	Using PLSQL_CODE_TYPE: Example
	Using PLSQL_CODE_TYPE: Example
	Using PLSQL_CODE_TYPE: A Second Example
	Using PLSQL_CODE_TYPE: A Second Example
	NATIVE Compilation and SQL Statements
	Does your PL/SQL Program Contain Useless Code?
	Does your PL/SQL Program Contain Useless Code?
	Does your PL/SQL Program Contain Useless Code?
	The PLSQL_OPTIMIZE_LEVEL Initialization Parameter
	The PLSQL_OPTIMIZE_LEVEL Initialization Parameter
	The PLSQL_OPTIMIZE_LEVEL Initialization Parameter
	The PLSQL_OPTIMIZE_LEVEL Initialization Parameter
	PLSQL_OPTIMIZE_LEVEL: An Example
	Using USER_PLSQL_OBJECT_SETTINGS
	Using USER_PLSQL_OBJECT_SETTINGS
	Terminology
	Summary
	Slide Number 28

