

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
5-1
Introduction to Explicit Cursors

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Objectives

This lesson covers the following objectives:
• Distinguish between an implicit and an explicit cursor

• Describe why and when to use an explicit cursor in PL/SQL
code

• List two or more guidelines for declaring and controlling
explicit cursors

• Create PL/SQL code that successfully opens a cursor and
fetches a piece of data into a variable

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Objectives

This lesson covers the following objectives:
• Use a simple loop to fetch multiple rows from a cursor

• Create PL/SQL code that successfully closes a cursor after
fetching data into a variable

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Purpose

• You have learned that a SQL SELECT statement in a
PL/SQL block is successful only if it returns exactly one
row.

• What if you need to write a SELECT statement that
returns more than one row?

• For example, you need to produce a report of all
employees?

• To return more than one row, you must declare and use
an explicit cursor.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Context Areas and Cursors

• The Oracle server allocates a private memory area called a
context area to store the data processed by a SQL statement.

• Every context area (and therefore every SQL statement) has
a cursor associated with it.

Context Area

Cursor

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Context Areas and Cursors

• You can think of a cursor either as a label for the context
area, or as a pointer to the context area.

• In fact, a cursor is both of these items.

Context Area

Cursor

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Implicit and Explicit Cursors

There are two types of cursors:
• Implicit cursors: Defined automatically by Oracle for all SQL

DML statements (INSERT, UPDATE, DELETE, and
MERGE), and for SELECT statements that return only one
row.

• Explicit cursors: Declared by the programmer for queries
that return more than one row.
– You can use explicit cursors to name a context area and

access its stored data.

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Limitations of Implicit Cursors

• Programmers must think about the data that is possible as
well as the data that actually exists now.

• If there ever is more than one row in the EMPLOYEES
table, the SELECT statement below (without a WHERE
clause) will cause an error.
DECLARE
 v_salary employees.salary%TYPE;
BEGIN
 SELECT salary INTO v_salary
 FROM employees;
 DBMS_OUTPUT.PUT_LINE(' Salary is : '||v_salary);
END;
 ORA-01422: exact fetch returns more than requested number of rows

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Explicit Cursors

• With an explicit cursor, you can retrieve multiple rows
from a database table, have a pointer to each row that is
retrieved, and work on the rows one at a time.

• Reasons to use an explicit cursor:
– It is the only way in PL/SQL to retrieve more than one row

from a table.
– Each row is fetched by a separate program statement, giving

the programmer more control over the processing of the
rows.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Example of an Explicit Cursor

The following example uses an explicit cursor to display each
row from the departments table.
DECLARE
 CURSOR cur_depts IS
 SELECT department_id, department_name FROM departments
 v_department_id departments.department_id%TYPE;
 v_department_name departments.department_name%TYPE;
BEGIN
 OPEN cur_depts;
 LOOP
 FETCH cur_depts INTO v_department_id, v_department_name;
 EXIT WHEN cur_depts%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_department_id||' '||v_department_name);
 END LOOP;
 CLOSE cur_depts;
END;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Explicit Cursor Operations

• The set of rows returned by a multiple-row query is called
the active set, and is stored in the context area.

• Its size is the number of rows that meet your query
criteria.

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

139 Seo ST_CLERK

Explicit Cursor

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Explicit Cursor Operations

• Think of the context area (named by the cursor) as a box,
and the active set as the contents of the box.

• To get at the data, you must OPEN the box and FETCH
each row from the box one at a time.

• When finished, you must CLOSE the box.

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

139 Seo ST_CLERK

Explicit Cursor

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Controlling Explicit Cursors

Fetch each row,
one at a time.

Close the cursor.

Cursor
pointer

 Open the cursor. 1

2

3

Cursor
pointer

Cursor
pointer

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Steps for Using Explicit Cursors

You first DECLARE a cursor, and then you use the OPEN,
FETCH, and CLOSE statements to control a cursor.

Retrieve the
current row

into
variables.

FETCH

Test for
remaining

rows.
Return to
FETCH if
additional
row found.

Release the
active set.

CLOSE

Define the
cursor.

DECLARE

Fill the
cursor

active set
with data.

OPEN EXIT

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Steps for Using Explicit Cursors

Now that you have a conceptual understanding of cursors,
review the steps to use them:
• DECLARE the cursor in the declarative section by naming it

and defining the SQL SELECT statement to be associated
with it.

• OPEN the cursor.
– This will populate the cursor's active set with the results of

the SELECT statement in the cursor's definition.
– The OPEN statement also positions the cursor pointer at the

first row.

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Steps for Using Explicit Cursors

Now that you have a conceptual understanding of cursors,
review the steps to use them:
• FETCH each row from the active set and load the data into

variables.
– After each FETCH, the EXIT WHEN checks to see if the FETCH

reached the end of the active set resulting in a data NOTFOUND
condition.

– If the end of the active set was reached, the LOOP is exited.
• CLOSE the cursor.

– The CLOSE statement releases the active set of rows.
– It is now possible to reopen the cursor to establish a fresh

active set using a new OPEN statement.

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Declaring the Cursor

When declaring the cursor:
• Do not include the INTO clause in the cursor declaration

because it appears later in the FETCH statement.

• If processing rows in a specific sequence is required, then
use the ORDER BY clause in the query.

• The cursor can be any valid SELECT statement, including
joins, subqueries, and so on.

• If a cursor declaration references any PL/SQL variables,
these variables must be declared before declaring the
cursor.

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Syntax for Declaring the Cursor

• The active set of a cursor is determined by the SELECT
statement in the cursor declaration.

• Syntax:

• In the syntax:
– cursor_name Is a PL/SQL identifier
– select_statement Is a SELECT statement without
 an INTO clause

CURSOR cursor_name IS

 select_statement;

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Declaring the Cursor Example 1

The cur_emps cursor is declared to retrieve the
employee_id and last_name columns of the employees
working in the department with a department_id of 30.
DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id = 30;
...

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Declaring the Cursor Example 2

• The cur_depts cursor is declared to retrieve all the
details for the departments with the location_id
1700.

• You want to fetch and process these rows in ascending
sequence by department_name.

DECLARE
 CURSOR cur_depts IS
 SELECT * FROM departments
 WHERE location_id = 1700
 ORDER BY department_name;
...

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Declaring the Cursor Example 3

• A SELECT statement in a cursor declaration can include
joins, group functions, and subqueries.

• This example retrieves each department that has at least
two employees, giving the department name and number
of employees.
DECLARE
 CURSOR cur_depts_emps IS
 SELECT department_name, COUNT(*) AS how_many
 FROM departments d, employees e
 WHERE d.department_id = e.department_id
 GROUP BY d.department_name
 HAVING COUNT(*) > 1;
...

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Opening the Cursor

• The OPEN statement executes the query associated with
the cursor, identifies the active set, and positions the
cursor pointer to the first row.

• The OPEN statement is included in the executable section
of the PL/SQL block.
DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id = 30;
...
BEGIN
 OPEN cur_emps;
...

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Opening the Cursor

The OPEN statement performs the following operations:
• Allocates memory for a context area (creates the box to

hold the data)
• Executes the SELECT statement in the cursor declaration,

returning the results into the active set (fills the box with
the data)

• Positions the pointer to the first row
in the active set

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Fetching Data from the Cursor

• The FETCH statement retrieves the rows from the cursor
one at a time.

• After each successful fetch, the cursor advances to the
next row in the active set.
DECLARE
 CURSOR emp_cursor IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id =10;
 v_empno employees.employee_id%TYPE;
 v_lname employees.last_name%TYPE;
BEGIN
 OPEN emp_cursor;
 FETCH emp_cursor INTO v_empno, v_lname;
 DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);
 ...
END;

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Fetching Data from the Cursor

• Two variables, v_empno and v_lname, were declared to
hold the values fetched from the cursor.

DECLARE
 CURSOR emp_cursor IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id =10;
 v_empno employees.employee_id%TYPE;
 v_lname employees.last_name%TYPE;
BEGIN
 OPEN emp_cursor;
 FETCH emp_cursor INTO v_empno, v_lname;
 DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);
 ...
END;

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Fetching Data from the Cursor

• The previous code successfully fetched the values from the
first row in the cursor into the variables.

• If there are other employees in department 50, you have
to use a loop as shown below to access and process each
row.
DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id =50;
 v_empno employees.employee_id%TYPE;
 v_lname employees.last_name%TYPE;
BEGIN
 OPEN cur_emps;
 LOOP
 FETCH cur_emps INTO v_empno, v_lname;
 EXIT WHEN cur_emps%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);
 END LOOP; …
END;

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Guidelines for Fetching Data From the
Cursor

Follow these guidelines when fetching data from the cursor:
• Include the same number of variables in the INTO clause

of the FETCH statement as columns in the SELECT
statement, and be sure that the data types are compatible.

• Match each variable to correspond to the columns position
in the cursor definition.

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Guidelines for Fetching Data From the
Cursor

Follow these guidelines when fetching data from the cursor:
• Test to see whether the cursor contains rows.

• If a fetch acquires no values, then there are no rows to
process (or left to process) in the active set and no error is
recorded.

• You can use the %NOTFOUND cursor attribute to test for
the exit condition.

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Fetching Data From the Cursor Example 1

What is wrong with this example?
DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name, salary FROM employees
 WHERE department_id =30;
 v_empno employees.employee_id%TYPE;
 v_lname employees.last_name%TYPE;
 v_sal employees.salary%TYPE;
BEGIN
 OPEN cur_emps;
 LOOP
 FETCH cur_emps INTO v_empno, v_lname;
 EXIT WHEN cur_emps%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);
 END LOOP;
 …
END;

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Fetching Data From the Cursor Example 2

• There is only one employee in department 10.
• What happens when this example is executed?

 DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id =10;
 v_empno employees.employee_id%TYPE;
 v_lname employees.last_name%TYPE;
BEGIN
 OPEN cur_emps;
 LOOP
 FETCH cur_emps INTO v_empno, v_lname;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_lname);
 END LOOP;
 …
END;

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Closing the Cursor

• The CLOSE statement disables the cursor, releases the
context area, and undefines the active set.

• You should close the cursor after completing the
processing of the FETCH statement.
...
 LOOP
 FETCH cur_emps INTO v_empno, v_lname;
 EXIT WHEN cur_emps%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
v_lname);
 END LOOP;
 CLOSE cur_emps;
END;

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Closing the Cursor

• You can reopen the cursor later if required.
• Think of CLOSE as closing and emptying the box, so you

can no longer FETCH its contents.

...
 LOOP
 FETCH cur_emps INTO v_empno, v_lname;
 EXIT WHEN cur_emps%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
v_lname);
 END LOOP;
 CLOSE cur_emps;
END;

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Guidelines for Closing the Cursor

Follow these guidelines when closing the cursor:
• A cursor can be reopened only if it is closed.

• If you attempt to fetch data from a cursor after it has been
closed, then an INVALID_CURSOR exception is raised.

• If you later reopen the cursor, the associated SELECT
statement is re-executed to re-populate the context area
with the most recent data from the database.

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Now, when looking at an explicit cursor, you should be able
to identify the cursor-related keywords and explain what
each statement is doing.

Putting It All Together

DECLARE
 CURSOR cur_depts IS
 SELECT department_id, department_name FROM departments
 v_department_id departments.department_id%TYPE;
 v_department_name departments.department_name%TYPE;
BEGIN
 OPEN cur_depts;
 LOOP
 FETCH cur_depts INTO v_department_id, v_department_name;
 EXIT WHEN cur_depts%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_department_id||' '||v_department_name);
 END LOOP;
 CLOSE cur_depts;
END;

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Terminology

Key terms used in this lesson included:
• Active set
• CLOSE

• Context area

• Cursor

• Explicit cursor
• FETCH

• Implicit cursor
• OPEN

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Summary

In this lesson, you should have learned how to:
• Distinguish between an implicit and an explicit cursor

• Describe why and when to use an explicit cursor in PL/SQL
code

• List two or more guidelines for declaring and controlling
explicit cursors

• Create PL/SQL code that successfully opens a cursor and
fetches a piece of data into a variable

37

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L1
Introduction to Explicit Cursors

Summary

In this lesson, you should have learned how to:
• Use a simple loop to fetch multiple rows from a cursor

• Create PL/SQL code that successfully closes a cursor after
fetching data into a variable

38

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Objectives
	Purpose
	Context Areas and Cursors
	Context Areas and Cursors
	Implicit and Explicit Cursors
	Limitations of Implicit Cursors
	Explicit Cursors
	Example of an Explicit Cursor
	Explicit Cursor Operations
	Explicit Cursor Operations
	Controlling Explicit Cursors
	Steps for Using Explicit Cursors
	Steps for Using Explicit Cursors
	Steps for Using Explicit Cursors
	Declaring the Cursor
	Syntax for Declaring the Cursor
	Declaring the Cursor Example 1
	Declaring the Cursor Example 2
	Declaring the Cursor Example 3
	Opening the Cursor
	Opening the Cursor
	Fetching Data from the Cursor
	Fetching Data from the Cursor
	Fetching Data from the Cursor
	Guidelines for Fetching Data From the Cursor
	Guidelines for Fetching Data From the Cursor
	Fetching Data From the Cursor Example 1
	Fetching Data From the Cursor Example 2
	Closing the Cursor
	Closing the Cursor
	Guidelines for Closing the Cursor
	Putting It All Together
	Terminology
	Summary
	Summary
	Slide Number 39

