

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
5-3
Cursor FOR Loops

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Objectives

This lesson covers the following objectives:
• List and explain the benefits of using cursor FOR loops

• Create PL/SQL code to declare a cursor and manipulate it in a
FOR loop

• Create PL/SQL code containing a cursor FOR loop using a
subquery

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Purpose

• You have already learned how to declare and use a simple
explicit cursor, using DECLARE, OPEN, and FETCH in a
loop, testing for %NOTFOUND, and CLOSE statements.

• Wouldn’t it be easier if you could do all this with just one
statement?

• You can do all of this using a cursor FOR loop.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops

• A cursor FOR loop processes rows in an explicit cursor.
• It is a shortcut because the cursor is opened, a row is

fetched once for each iteration in the loop, the loop exits
when the last row is processed, and the cursor is closed
automatically.

• The loop itself is terminated automatically at the end of
the iteration when the last row has been fetched.

• Syntax:

 FOR record_name IN cursor_name LOOP
 statement1;
 statement2;
 . . .
END LOOP;

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops

In the syntax:
• record_name Is the name of the implicitly declared
 record (as cursor_name%ROWTYPE)
• cursor_name Is a PL/SQL identifier for a previously

 declared cursor
FOR record_name IN cursor_name LOOP

 statement1;

 statement2;

 . . .

END LOOP;

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops

• Note: v_emp_record is the record that is implicitly
declared.

• You can access the fetched data with this implicit record as
shown below.

• No variables are declared to hold the fetched data and no
INTO clause is required.

• OPEN and CLOSE statements are not required, they
happen automatically in this syntax.

DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name FROM employees
 WHERE department_id = 50;
BEGIN
 FOR v_emp_record IN cur_emps LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id || ' '
 || v_emp_record.last_name);
 END LOOP;
END;

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops

• Compare the cursor FOR loop (on the left) with the cursor
code you learned in the previous lesson.

• The two forms of the code are logically identical to each
other and produce exactly the same results.

DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name
 FROM employees
 WHERE department_id = 50;
BEGIN
 FOR v_emp_rec IN cur_emps LOOP
 DBMS_OUTPUT.PUT_LINE(…);
 END LOOP;
END;

DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name
 FROM employees
 WHERE department_id = 50;
 v_emp_rec cur_emps%ROWTYPE;
BEGIN
 OPEN cur_emps;
 LOOP
 FETCH cur_emps INTO v_emp_rec;
 EXIT WHEN cur_emps%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(…);
 END LOOP;
 CLOSE cur_emps;
END;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops: A Second Example

• v_dept_record has been implicitly declared as
cur_depts%ROWTYPE.

• How many fields does it contain?
 DECLARE
 CURSOR cur_depts IS
 SELECT department_id, department_name
 FROM departments
 ORDER BY department_id;
BEGIN
 FOR v_dept_record IN cur_depts LOOP
 DBMS_OUTPUT.PUT_LINE(v_dept_record.department_id || ' '
 || v_dept_record.department_name);
 END LOOP;
END;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Guidelines for Cursor FOR Loops

Guidelines:
• Do not declare the record that controls the loop because it

is declared implicitly.

• The scope of the implicit record is restricted to the loop, so
you cannot reference the record outside the loop.

• You can access fetched data using
record_name.column_name.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Testing Cursor Attributes

• You can still test cursor attributes, such as %ROWCOUNT.
• This example exits from the loop after five rows have been

fetched and processed.
• The cursor is still closed automatically.
DECLARE
 CURSOR cur_emps IS
 SELECT employee_id, last_name
 FROM employees;
BEGIN
 FOR v_emp_record IN cur_emps LOOP
 EXIT WHEN cur_emps%ROWCOUNT > 5;
 DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id || ' '
 || v_emp_record.last_name);
 END LOOP;
END;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops Using Subqueries

• You can go one step further. You don’t have to declare the
cursor at all!

• Instead, you can specify the SELECT on which the cursor
is based directly in the FOR loop.

• The advantage of this is the cursor definition is contained
in a single FOR … statement.

• In complex code with lots of cursors, this simplification
makes code maintenance easier and quicker.

• The downside is you can't reference cursor attributes.

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops Using Subqueries:
Example

The SELECT clause in the FOR statement is technically a
subquery, so you must enclose it in parentheses.

BEGIN
 FOR v_emp_record IN (SELECT employee_id, last_name
 FROM employees WHERE department_id = 50)
 LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id || ' '
 || v_emp_record.last_name);
 END LOOP;
END;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Cursor FOR Loops Using Subqueries

• Again, compare these two forms of code.
• They are logically identical, but which one would you

rather write – especially if you hate typing!
 BEGIN
 FOR v_dept_rec IN (SELECT *
 FROM departments) LOOP
 DBMS_OUTPUT.PUT_LINE(…);
 END LOOP;
END;

DECLARE
 CURSOR cur_depts IS
 SELECT * FROM departments;
 v_dept_rec
 cur_depts%ROWTYPE;
BEGIN
 OPEN cur_depts;
 LOOP
 FETCH cur_depts INTO
 v_dept_rec;
 EXIT WHEN
 cur_depts%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(…);
 END LOOP;
 CLOSE cur_depts;
END;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Terminology

Key terms used in this lesson included:
• Cursor FOR loop

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S5L3
Cursor FOR Loops

Summary

In this lesson, you should have learned how to:
• List and explain the benefits of using cursor FOR loops

• Create PL/SQL code to declare a cursor and manipulate it in a
FOR loop

• Create PL/SQL code containing a cursor FOR loop using a
subquery

16

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Cursor FOR Loops
	Cursor FOR Loops
	Cursor FOR Loops
	Cursor FOR Loops
	Cursor FOR Loops: A Second Example
	Guidelines for Cursor FOR Loops
	Testing Cursor Attributes
	Cursor FOR Loops Using Subqueries
	Cursor FOR Loops Using Subqueries: Example
	Cursor FOR Loops Using Subqueries
	Terminology
	Summary
	Slide Number 17

