

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
7-3
Trapping User-Defined Exceptions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Objectives

This lesson covers the following objectives:
• Write PL/SQL code to name a user-defined exception

• Write PL/SQL code to raise an exception
• Write PL/SQL code to handle a raised exception
• Write PL/SQL code to use RAISE_APPLICATION_ERROR

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Purpose

• In addition to the predefined Oracle errors, programmers
can create their own user-defined errors.

• User-defined errors are not automatically raised by the
Oracle server, but are defined by the programmer and
must be raised by the programmer when they occur.

• With a user-defined error, the programmer creates an
error code and an error message.

• An example of a user-defined error might be
INVALID_MANAGER_ID.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Exception Types

This lesson discusses user-defined errors.

Exception Description Instructions for Handling

Predefined Oracle
server error

Most common
PL/SQL errors (about
20 or so that are
named)

You need not declare these
exceptions. They are
predefined by the Oracle server
and are raised implicitly
(automatically).

Non-predefined
Oracle server
error

Other PL/SQL errors
(no name)

Declare within the declarative
section and allow the Oracle
Server to raise them implicitly
(automatically).

User-defined error Defined by the
programmer

Declare within the declarative
section, and raise explicitly.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

• PL/SQL allows you to define your own exceptions.
• You define exceptions depending on the requirements of

your application.

Trapping User-Defined Exceptions

Declarative section

Declare

Name the
exception.

Explicitly raise the
exception by using
the RAISE
statement.

Exception-handling
section

Handle the raised
exception.

Raise Reference

Executable section

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

• One example of the need for a user-defined exception is
during the input of data.

• Assume your program prompts the user for a department
number and name so it can update the name of the
department.
DECLARE
 v_name VARCHAR2(20):= 'Accounting';
 v_deptno NUMBER := 27;
BEGIN
 UPDATE departments
 SET department_name = v_name
 WHERE department_id = v_deptno;
END;

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

• What happens if the user enters an invalid department
number?

• Oracle doesn't see this as an error.

• You will need a user-defined error to catch this situation.

DECLARE
 v_name VARCHAR2(20):= 'Accounting';
 v_deptno NUMBER := 27;
BEGIN
 UPDATE departments
 SET department_name = v_name
 WHERE department_id = v_deptno;
END;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

• What happens when the user enters an invalid department?
• The code as written doesn't produce an Oracle error.
• You need to create a user-defined error to handle this

situation.
• You do this by:

1. Declaring the name of the user-defined exception within the
declarative section.

2. Using the RAISE statement to raise the exception explicitly

within the executable section.
 IF SQL%NOTFOUND THEN RAISE e_invalid_department;

e_invalid_department EXCEPTION;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

• You do this by:
3. Referencing the declared exception name within a WHEN

clause in the exception-handling section.

• These three "steps" are similar to what we did in the
previous lesson with non-predefined Oracle errors.

• The differences are, no PRAGMA EXCEPTION_INIT is
required and you must explicitly raise the exception using
the RAISE command.

EXCEPTION
 WHEN e_invalid_department THEN
 DBMS_OUTPUT.PUT_LINE('No such department id.');

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Trapping User-Defined Exceptions

The completed code with the "steps" indicated.
 DECLARE e_invalid_department EXCEPTION;
 v_name VARCHAR2(20):='Accounting';
 v_deptno NUMBER := 27;
BEGIN
 UPDATE departments
 SET department_name = v_name
 WHERE department_id = v_deptno;
 IF SQL%NOTFOUND THEN
 RAISE e_invalid_department;
 END IF;
EXCEPTION
 WHEN e_invalid_department
 THEN DBMS_OUTPUT.PUT_LINE('No such department id.');
END;

1

2

3

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

The RAISE Statement

• You can use the RAISE statement to raise exceptions.

• Raising a user-defined exception:

• Raising an Oracle server error:

IF v_grand_total = 0 THEN
 RAISE e_invalid_total;
ELSE
 DBMS_OUTPUT.PUT_LINE(v_num_students / v_grand_total);
END IF;

IF v_grand_total = 0 THEN
 RAISE ZERO_DIVIDE;
ELSE
 DBMS_OUTPUT.PUT_LINE(v_num_students / v_grand_total);
END IF;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

The RAISE_APPLICATION_ERROR
Procedure

• You can use the RAISE_APPLICATION_ERROR
procedure to return user-defined error messages from
stored subprograms.

• The following slides explain the syntax for using
RAISE_APPLICATION_ERROR

• The main advantage of using this procedure instead of
RAISE, is that RAISE_APPLICATION_ERROR allows
you to associate your own error number and meaningful
message with the exception.

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

The RAISE_APPLICATION_ERROR
Syntax

• The error_number must fall between -20000 and
-20999.

• This range is reserved by Oracle for programmer use, and
is never used for predefined Oracle server errors.

• message is the user-specified message for the exception.

• It is a character string up to 2,048 bytes long.
RAISE_APPLICATION_ERROR (error_number,
 message[, {TRUE | FALSE}]);

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

The RAISE_APPLICATION_ERROR
Syntax

• TRUE | FALSE is an optional Boolean parameter.

• If TRUE, the error is placed on the stack of previous errors.
• If FALSE—the default—the error replaces all previous

errors.

RAISE_APPLICATION_ERROR (error_number,
 message[, {TRUE | FALSE}]);

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

The RAISE_APPLICATION_ERROR
Usage

You can use the RAISE_APPLICATION_ERROR in two
different places:

• Executable section

• Exception section

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

RAISE_APPLICATION_ERROR in the
Executable Section

• When called, the RAISE_APPLICATION_ERROR
procedure displays the error number and message to the
user.

• This process is consistent with other Oracle server errors.

DECLARE
 v_mgr PLS_INTEGER := 123;
BEGIN
 DELETE FROM employees
 WHERE manager_id = v_mgr;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202,
 'This is not a valid manager');
 END IF;
END;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

RAISE_APPLICATION_ERROR in the
Exception Section

DECLARE
 v_mgr PLS_INTEGER := 27;
 v_employee_id employees.employee_id%TYPE;
BEGIN
 SELECT employee_id INTO v_employee_id
 FROM employees
 WHERE manager_id = v_mgr;
 DBMS_OUTPUT.PUT_LINE('Employee #' || v_employee_id ||
 ' works for manager #' || v_mgr || '.');
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20201,
 'This manager has no employees');
 WHEN TOO_MANY_ROWS THEN
 RAISE_APPLICATION_ERROR(-20202,
 'Too many employees were found.');
END;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Using the RAISE_APPLICATION_ERROR
with a User-Defined Exception

DECLARE
 e_name EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_name, -20999);
 v_last_name employees.last_name%TYPE := 'Silly Name';
BEGIN
 DELETE FROM employees WHERE last_name = v_last_name;
 IF SQL%ROWCOUNT = 0 THEN
 RAISE_APPLICATION_ERROR(-20999, 'Invalid last name');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_last_name ||' deleted');
 END IF;
EXCEPTION
 WHEN e_name THEN
 DBMS_OUTPUT.PUT_LINE('Valid last names are: ');
 FOR c1 IN (SELECT DISTINCT last_name FROM employees)
 LOOP
 DBMS_OUTPUT.PUT_LINE(c1.last_name);
 END LOOP;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('Error deleting from employees');
END;

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Terminology

Key terms used in this lesson included:
• RAISE
• RAISE_APPLICATION_ERROR
• User-defined error

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S7L3
Trapping User-Defined Exceptions

Summary

In this lesson, you should have learned how to:
• Write PL/SQL code to name a user-defined exception

• Write PL/SQL code to raise an exception
• Write PL/SQL code to handle a raised exception
• Write PL/SQL code to use RAISE_APPLICATION_ERROR

21

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Exception Types
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	Trapping User-Defined Exceptions
	The RAISE Statement
	The RAISE_APPLICATION_ERROR Procedure
	The RAISE_APPLICATION_ERROR Syntax
	The RAISE_APPLICATION_ERROR Syntax
	The RAISE_APPLICATION_ERROR Usage
	RAISE_APPLICATION_ERROR in the Executable Section
	RAISE_APPLICATION_ERROR in the Exception Section
	Using the RAISE_APPLICATION_ERROR with a User-Defined Exception
	Terminology
	Summary
	Slide Number 22

