

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
9-1
Creating Functions

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Objectives

This lesson covers the following objectives:
• Define a stored function

• Create a PL/SQL block containing a function
• List ways in which a function can be invoked

• Create a PL/SQL block that invokes a function that has
parameters

• List the development steps for creating a function
• Describe the differences between procedures and functions

 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Purpose

• In this lesson, you learn how to create and invoke functions.
• A function is a named subprogram that must return exactly

one value and must be called as part of a SQL or PL/SQL
expression.

• Functions are an integral part of modular code.

• They are stored in the database as schema objects for
repeated execution.

• Functions promote reusability and maintainability.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

• A function is a named PL/SQL block (subprogram) that can
accept optional IN parameters and must return exactly
one value.

• Functions must be called as part of a SQL or PL/SQL
expression.

• In SQL expressions, a function must obey specific rules to
control side effects.

• Avoid the following within functions:
– Any kind of DML or DDL
– COMMIT or ROLLBACK
– Altering global variables

What Is a Stored Function?

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

• Certain return types (Boolean, for example) prevent a
function from being called as part of a SELECT.

• In PL/SQL expressions, the function identifier acts like a
variable whose value depends on the parameters passed
to it.

• A function must have a RETURN clause in the header and
at least one RETURN statement in the executable section.

What Is a Stored Function?

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

The header for a function is like a PROCEDURE header with
two differences:
• The parameter mode should only be IN.
• The RETURN clause is used instead of OUT mode.

Syntax for Creating Functions

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
 [local_variable_declarations; …]
BEGIN
 -- actions;
 RETURN expression;
END [function_name];

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

• A function must return a single value.
• You must provide a RETURN statement to return a value

with a data type that is consistent with the function
declaration type.

• You create new functions using the CREATE [OR
REPLACE] FUNCTION statement which can declare a
list of parameters, must return exactly one value, and must
define the actions to be performed by the PL/SQL block.

Syntax for Creating Functions

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

• Create the function:

• Invoke the function as an expression or as a parameter value:

Stored Function With a Parameter:
Example

CREATE OR REPLACE FUNCTION get_sal
 (p_id IN employees.employee_id%TYPE)
 RETURN NUMBER IS
 v_sal employees.salary%TYPE := 0;
BEGIN
 SELECT salary
 INTO v_sal
 FROM employees
 WHERE employee_id = p_id;
 RETURN v_sal;
END get_sal;

 ... v_salary := get_sal(100);

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

• You can use RETURN from the executable section and/or from
the EXCEPTION section.

• Create the function:

• Invoke the function as an expression with a bad parameter:

Using RETURN

CREATE OR REPLACE FUNCTION get_sal
 (p_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 v_sal employees.salary%TYPE := 0;
BEGIN
 SELECT salary INTO v_sal
 FROM employees WHERE employee_id = p_id;
 RETURN v_sal;
EXCEPTION
 WHEN NO_DATA_FOUND THEN RETURN NULL;
END get_sal;

... v_salary := get_sal(999);

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Ways to Invoke (or Execute) Functions With
Parameters

Functions can be invoked in the following ways:

• As part of PL/SQL expressions – use a local variable in an
anonymous block to hold the returned value from a
function.

• As a parameter to another subprogram – pass functions
between subprograms.

• As an expression in a SQL statement – invoke a function as
any other single-row function in a SQL statement.

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Invoking a Function as Part of a PL/SQL
Expression

• When invoking a function as part of a PL/SQL expression,
you can use a local variable to store the returned result.

• In this example, v_sal is the local variable in an
anonymous block that stores the results returned from the
get_sal function.

DECLARE v_sal employees.salary%type;
BEGIN
 v_sal := get_sal(100); ...
END;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Invoking a Function as a Parameter in
Another Subprogram

• You can also invoke a function as a parameter to another
subprogram.

• In this example, the get_sal function with all its
arguments is nested in the parameter required by the
DBMS_OUTPUT.PUT_LINE procedure.
...DBMS_OUTPUT.PUT_LINE(get_sal(100));

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Invoking a Function as an Expression in a
SQL Statement

• You can also invoke a function as an expression in a SQL
statement.

• The following example shows how you can use a function
as a single-row function in a SQL statement.

• Note: The restrictions that apply to functions when used in
a SQL statement are discussed in the next lesson.

• If functions are designed thoughtfully, they can be
powerful constructs.

SELECT job_id, get_sal(employee_id) FROM employees;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Invoking Functions Without Parameters

• Most functions have parameters, but not all.
• For example, the system functions USER and SYSDATE

have no parameters.

• Invoke as part of a PL/SQL expression, using a local
variable to obtain the result
 DECLARE v_today DATE;

BEGIN
 v_today := SYSDATE; ...
END;

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Invoking Functions Without Parameters

• Use as a parameter to another subprogram

• Use in a SQL statement (subject to restrictions)
 SELECT job_id, SYSDATE-hiredate FROM employees;

...DBMS_OUTPUT.PUT_LINE(USER);

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Benefits and Restrictions That Apply to
Functions

Benefits Restrictions
Try things quickly: Functions
allow you to temporarily display
a value in a new format: a
different case, annually vs.
monthly (times 12),
concatenated, or with
substrings.

PL/SQL types do not completely
overlap with SQL types. What is fine
for PL/SQL (for example, BOOLEAN,
RECORD) might be invalid for a
SELECT.

Extend functionality: Add new
features, such as spell checking
and parsing.

PL/SQL sizes are not the same as
SQL sizes. For instance, a PL/SQL
VARCHAR2 variable can be up to 32
KB, whereas a SQL VARCHAR2
column can be only up to 4 KB.

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Syntax Differences Between Procedures
and Functions

• Procedures

• Functions

CREATE [OR REPLACE] PROCEDURE name [parameters] IS|AS (Mandatory)
 Variables, cursors, etc. (Optional)
BEGIN (Mandatory)
 SQL and PL/SQL statements;
EXCEPTION (Optional)
 WHEN exception-handling actions;
END [name]; (Mandatory)

CREATE [OR REPLACE] FUNCTION name [parameters] (Mandatory)
 RETURN datatype IS|AS (Mandatory)
 Variables, cursors, etc. (Optional)
BEGIN (Mandatory)
 SQL and PL/SQL statements;
 RETURN ...; (One Mandatory, more optional)
EXCEPTION (Optional)
 WHEN exception-handling actions;
END [name]; (Mandatory)

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Differences/Similarities Between
Procedures and Functions

• Both can have zero or more IN parameters that can be

passed from the calling environment.
• Both have the standard block structure including exception

handling.

Procedures Functions
Execute as a PL/SQL statement Invoked as part of an expression
Do not contain RETURN clause in
the header

Must contain a RETURN clause in the
header

May return values (if any) in output
parameters (not required) Must return a single value

May contain a RETURN statement
without a value

Must contain at least one RETURN
statement

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Differences Between Procedures and
Functions

Procedures
• You create a procedure to store a series of actions for later

execution.
• A procedure does not have to return a value.
• A procedure can call a function to assist with its actions.
• Note: A procedure containing a single OUT parameter

might be better rewritten as a function returning the
value.

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Differences Between Procedures and
Functions

Functions
• You create a function when you want to compute a value

that must be returned to the calling environment.
• Functions return only a single value, and the value is

returned through a RETURN statement.
• The functions used in SQL statements cannot use OUT or
IN OUT modes.

• Although a function using OUT can be invoked from a
PL/SQL procedure or anonymous block, it cannot be used
in SQL statements.

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Terminology

Key terms used in this lesson included:
• Stored function

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L1
Creating Functions

Summary

In this lesson, you should have learned how to:
• Define a stored function

• Create a PL/SQL block containing a function
• List ways in which a function can be invoked

• Create a PL/SQL block that invokes a function that has
parameters

• List the development steps for creating a function

• Describe the differences between procedures and functions

 23

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	What Is a Stored Function?
	What Is a Stored Function?
	Syntax for Creating Functions
	Syntax for Creating Functions
	Stored Function With a Parameter: Example
	Using RETURN
	Ways to Invoke (or Execute) Functions With Parameters
	Invoking a Function as Part of a PL/SQL Expression
	Invoking a Function as a Parameter in Another Subprogram
	Invoking a Function as an Expression in a SQL Statement
	Invoking Functions Without Parameters
	Invoking Functions Without Parameters
	Benefits and Restrictions That Apply to Functions
	Syntax Differences Between Procedures and Functions
	Differences/Similarities Between Procedures and Functions
	Differences Between Procedures and Functions
	Differences Between Procedures and Functions
	Terminology
	Summary
	Slide Number 24

