

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
9-2
Using Functions in SQL Statements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Objectives

This lesson covers the following objectives:
• List the advantages of user-defined functions in SQL

statements
• List where user-defined functions can be called from within a

SQL statement

• Describe the restrictions on calling functions from SQL
statements

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Purpose

• In this lesson, you learn how to use functions within SQL
statements.

• If the SQL statement processes many rows in a table, the
function executes once for each row processed by the SQL
statement.

• For example, you could calculate the tax to be paid by
every employee using just one function.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

What Is a User-Defined Function?

• A user-defined function is a function that is created by the
PL/SQL programmer. GET_DEPT_NAME and
CALCULATE_TAX are examples of user-defined
functions, whereas UPPER, LOWER, and LPAD are
examples of system-defined functions automatically
provided by Oracle.

• Most system functions, such as UPPER, LOWER, and
LPAD are stored in a package named SYS.

• STANDARD. Packages are covered in a later section.

• These system functions are often called built-in functions.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• If used in the WHERE clause of a SELECT statement,
functions can increase efficiency by insuring all of the
desired rows are returned.

• For example, in a large database of employees, you could
have more than one employee with the same last name.

• If you use the following code, you find an employee with
the last name of "Taylor," but not the employee whose last
name was entered as "taylor."

Advantages of Functions in SQL Statements

SELECT * FROM employees
 WHERE last_name = 'Taylor';

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• How many different ways would you have to search to find
all possible examples of "Taylor?"

• By adding the UPPER function to the WHERE clause, you
can find all examples with one search.

• This code will return employees whose last name was
stored as "Taylor," "TAYLOR," "taylor," or "TAylor."

• Likewise, it doesn't matter how the user enters the search
criteria, as in this case, it was entered in all lower case
("TAylor").

Advantages of Functions in SQL Statements

SELECT * FROM employees
 WHERE UPPER(last_name) = UPPER('TAylor');

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• Functions in SQL statements can also manipulate data
values.

• For example, for an end-of-year social event, you want
(just for fun) to print name-tags for every employee with
the characters reversed, so “Mary Jones” becomes “senoJ
yraM.”

• You can create a user-defined function called
reverse_name, which does this, then code:

Advantages of Functions in SQL Statements

SELECT reverse_name(last_name, first_name) FROM employees;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• User-defined functions can extend SQL where activities are
too complex, too awkward, or unavailable with regular
SQL.

• Functions can also help us overcome repeatedly writing
the same code.

• For example, you want to calculate how long an employee
has been working for your business, rounded to a whole
number of months.

Advantages of Functions in SQL Statements

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• You could create a user-defined function called
how_many_months to do this.

• Then, the application programmer can code:

Advantages of Functions in SQL Statements

SELECT employee_id, how_many_months(hire_date)
 FROM employees;

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Function in SQL Expressions: Example

Create a function to determine each employee's taxes.

EMPLOYEE_ID LAST_NAME SALARY TAX(SALARY)

124 Mourgos 5800 464
141 Rajs 3500 280
142 Davies 3100 248
143 Matos 2600 208
144 Vargas 2500 200

CREATE OR REPLACE FUNCTION tax(p_value IN NUMBER)
 RETURN NUMBER IS
BEGIN
 RETURN (p_value * 0.08);
END tax;

SELECT employee_id, last_name, salary, tax(salary)
 FROM employees
 WHERE department_id = 50;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Where Can You Use User-Defined
Functions in a SQL Statement?

• User-defined functions act like built-in single-row
functions, such as UPPER,LOWER, and LPAD.

• They can be used in:
– The SELECT column-list of a query
– Conditional expressions in the WHERE and HAVING clauses
– The ORDER BY and GROUP BY clauses of a query
– The VALUES clause of the INSERT statement
– The SET clause of the UPDATE statement
– In short, they can be used anywhere that you have a value or

expression.

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Where Can You Use User-Defined
Functions in a SQL Statement?

• This example shows the user-defined function tax being
used in four places within a single SQL statement.

• The function makes this code easier to read and much

easier to update if the tax rate changes.

SELECT employee_id, tax(salary)
 FROM employees
 WHERE tax(salary) > (SELECT MAX(tax(salary))
 FROM employees
 WHERE department_id = 20)
 ORDER BY tax(salary) DESC;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Restrictions on Using Functions in SQL
Statements

• To use a user-defined function within a SQL statement, the
function must conform to the rules and restrictions of the
SQL language.

• The function can accept only valid SQL datatypes as IN
parameters, and must RETURN a valid SQL datatype.

• PL/SQL-specific types, such as BOOLEAN and %ROWTYPE
are not allowed.

• SQL size limits must not be exceeded (PL/SQL allows a
VARCHAR2 variable to be up to 32 KB in size, but prior to
Oracle 12c, SQL allowed only 4 KB).

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Restrictions on Using Functions in SQL
Statements

• User-defined functions may use positional, named, and
mixed notation for identifying arguments.

• Parameters for system functions must be specified with
positional notation.

• Example:

• The third SELECT statement causes an error.

SELECT employee_id, tax(p_value => salary)
 FROM employees;

SELECT employee_id, UPPER(last_name)
 FROM employees;

SELECT employee_id, UPPER(arg1 => last_name)
 FROM employees;

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Restrictions on Using Functions in SQL
Statements

• Functions called from a SELECT statement cannot contain
DML statements.

• Functions called from an UPDATE or DELETE statement
on a table cannot query or contain DML on the same table.

• Functions called from any SQL statement cannot end
transactions (that is, cannot execute COMMIT or
ROLLBACK operations).

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Restrictions on Using Functions in SQL
Statements

• Functions called from any SQL statement cannot issue DDL
(for example, CREATE TABLE) or DCL (for example,
ALTER SESSION) because they also do an implicit
COMMIT.

• Calls to subprograms that break these restrictions are also
not allowed in a function.

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Restrictions on Using Functions in SQL
Statements: Example 1

CREATE OR REPLACE FUNCTION dml_call_sql(p_sal NUMBER)
 RETURN NUMBER IS
BEGIN
 INSERT INTO employees(employee_id, last_name, email,
 hire_date, job_id, salary)
 VALUES(1, 'Frost', 'jfrost@company.com',
 SYSDATE, 'SA_MAN', p_sal);
 RETURN (p_sal + 100);
END dml_call_sql;

UPDATE employees
 SET salary = dml_call_sql(2000)
WHERE employee_id = 174;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

• The following function queries the EMPLOYEES table.

• When used within the following DML statement, it
returns the “mutating table” error message similar to the
error message shown in the previous slide.

Restrictions on Using Functions in SQL
Statements: Example 2

CREATE OR REPLACE FUNCTION query_max_sal (p_dept_id NUMBER)
 RETURN NUMBER IS
 v_num NUMBER;
 BEGIN
 SELECT MAX(salary) INTO v_num FROM employees
 WHERE department_id = p_dept_id;
 RETURN (v_num);
 END;

UPDATE employees SET salary = query_max_sal(department_id)
 WHERE employee_id = 174;

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Terminology

Key terms used in this lesson included:
• User-defined function

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S9L2
Using Functions in SQL Statements

Summary

In this lesson, you should have learned how to:
• List the advantages of user-defined functions in SQL

statements

• List where user-defined functions can be called from within a
SQL statement

• Describe the restrictions on calling functions from SQL
statements

21

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	What Is a User-Defined Function?
	Advantages of Functions in SQL Statements
	Advantages of Functions in SQL Statements
	Advantages of Functions in SQL Statements
	Advantages of Functions in SQL Statements
	Advantages of Functions in SQL Statements
	Function in SQL Expressions: Example
	Where Can You Use User-Defined Functions in a SQL Statement?
	Where Can You Use User-Defined Functions in a SQL Statement?
	Restrictions on Using Functions in SQL Statements
	Restrictions on Using Functions in SQL Statements
	Restrictions on Using Functions in SQL Statements
	Restrictions on Using Functions in SQL Statements
	Restrictions on Using Functions in SQL Statements: Example 1
	Restrictions on Using Functions in SQL Statements: Example 2
	Terminology
	Summary
	Slide Number 22

