

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
10-2
Managing Package Concepts

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Objectives

This lesson covers the following objectives:
• Explain the difference between public and private package

constructs
• Designate a package construct as either public or private

• Specify the appropriate syntax to drop packages

• Identify views in the Data Dictionary that manage packages
• Identify guidelines for using packages

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Purpose

• How would you create a procedure or function that
cannot be invoked directly from an application (maybe for
security reasons), but can be invoked only from other
PL/SQL subprograms?

• You would create a private subprogram within a package.

• In this lesson, you learn how to create private
subprograms.

• You also learn how to drop packages, and how to view
them in the Data Dictionary.

• You also learn about the additional benefits of packages.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• Public components are declared in the package
specification.

• You can invoke public components from any calling
environment, provided the user has been granted
EXECUTE privilege on the package.

Components of a PL/SQL Package

Package
specification

Package
body

Public Private

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• Private components are declared only in the package body
and can be referenced only by other (public or private)
constructs within the same package body.

• Private components can reference the package’s public
components.

Components of a PL/SQL Package

Package
specification

Package
body

Public Private

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Visibility of Package Components

• The visibility of a component describes whether that
component can be seen, that is, referenced and used by
other components or objects.

• Visibility of components depends on where they are
declared.

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Visibility of Package Components

You can declare components in three places within a
package:
• Globally in the package specification: these components

are visible throughout the package body and by the calling
environment

• Locally in the package body, but outside any subprogram,
these components are visible throughout the package
body, but not by the calling environment

• Locally in the package body, within a specific subprogram,
these components are visible only within that
subprogram.

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Global/Local Compared to Public/Private

• Remember that public components declared in the
specification are visible to the calling environment, while
private components declared only within the body are
not.

• Therefore all public components are global, while all
private components are local.

• So what’s the difference between public and global, and
between private and local?

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Global/Local Compared to Public/Private

• The answer is “no difference”—they are the same thing!
• But you use public/private when describing procedures

and functions, and global/local when describing other
components such as variables, constants, and cursors.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Globally declared components are visible internally and
externally to the package, such as:
• A global variable declared in a package specification can be

referenced and changed outside the package (for example,
global_var can be referenced externally).

• A public subprogram declared in the specification can be
called from external code sources (for example,
Procedure A can be called from an environment
external to the package).

Visibility of Global (Public) Components

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Visibility of Global (Public) Components

Package
specification

Procedure A;

global_var

External
code

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Local components are visible only within the structure in
which they are declared, such as the following:
• Local variables defined within a specific subprogram can

be referenced only within that subprogram, and are not
visible to external components.

• Local variables that are declared in a package body can be
referenced by other components in the same package
body.

• They are not visible to any subprograms or objects that are
outside the package.

Visibility of Local (Private) Components

Managing Package Concepts

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Visibility of Local (Private) Components

Package
body

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

variable_2

variable_1

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Note: Private subprograms, such as Procedure B, can be
invoked only with public subprograms, such as Procedure
A, or other private package constructs.

Visibility of Local (Private) Components

Package
specification

Package
body

Procedure A;

global_var

Procedure A IS
BEGIN
…
END;

Procedure B IS
BEGIN … END;

variable_1
External
code

variable_2

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• You have a business rule that no employee’s salary can be
increased by more than 20 percent at one time.

• g_max_sal_raise is a global constant initialized to 0.20.

• update_sal is a public procedure that updates an
employee’s salary.

Example of Package Specification:
salary_pkg:

CREATE OR REPLACE PACKAGE salary_pkg
IS
 g_max_sal_raise CONSTANT NUMBER := 0.20;
 PROCEDURE update_sal
 (p_employee_id employees.employee_id%TYPE,
 p_new_salary employees.salary%TYPE);
END salary_pkg;

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Example of Package Body: salary_pkg:

CREATE OR REPLACE PACKAGE BODY salary_pkg IS
 FUNCTION validate_raise -- private function
 (p_old_salary employees.salary%TYPE,
 p_new_salary employees.salary%TYPE)
 RETURN BOOLEAN IS
 BEGIN
 IF p_new_salary >
 (p_old_salary * (1 + g_max_sal_raise)) THEN
 RETURN FALSE;
 ELSE
 RETURN TRUE;
 END IF;
 END validate_raise;

 -- next slide shows the public procedure

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Example of Package Body: salary_pkg:

...
 PROCEDURE update_sal -- public procedure
 (p_employee_id employees.employee_id%TYPE,
 p_new_salary employees.salary%TYPE)
 IS v_old_salary employees.salary%TYPE; -- local variable
 BEGIN
 SELECT salary INTO v_old_salary FROM employees
 WHERE employee_id = p_employee_id;
 IF validate_raise(v_old_salary, p_new_salary) THEN
 UPDATE employees SET salary = p_new_salary
 WHERE employee_id = p_employee_id;
 ELSE
 RAISE_APPLICATION_ERROR(-20210, 'Raise too high');
 END IF;
 END update_sal;
END salary_pkg;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

After the package is stored in the database, you can invoke
subprograms stored within the same package or stored in
another package.

Invoking Package Subprograms

Within the
same
package

Specify the subprogram name

Subprogram;

You can fully qualify a subprogram within the
same package, but this is optional.

package_name.subprogram;

External to
the package

Fully qualify the (public) subprogram with its
package name

package_name.subprogram;

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Which of the following invocations from outside the
salary_pkg are valid (assuming the caller either owns or
has EXECUTE privilege on the package)?

Invoking Package Subprograms

DECLARE
 v_bool BOOLEAN;
 v_number NUMBER;
BEGIN
 salary_pkg.update_sal(100,25000); -- 1
 update_sal(100,25000); -- 2
 v_bool := salary_pkg.validate_raise(24000,25000); -- 3
 v_number := salary_pkg.g_max_sal_raise; -- 4
 v_number := salary_pkg.v_old_salary; -- 5
END;

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• To remove the entire package, specification and body, use
the following syntax:

• To remove only the package body, use the following
syntax:

• You cannot remove the package specification
on its own.

Removing Packages

DROP PACKAGE package_name;

DROP PACKAGE BODY package_name;

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• The source code for PL/SQL packages is maintained and is
viewable through the USER_SOURCE and ALL_SOURCE
tables in the Data Dictionary.

• To view the package specification, use:

• To view the package body, use:

Viewing Packages in the Data Dictionary

SELECT text
 FROM user_source
 WHERE name = 'SALARY_PKG' AND type = 'PACKAGE'
 ORDER BY line;

SELECT text
 FROM user_source
 WHERE name = 'SALARY_PKG' AND type = 'PACKAGE BODY'
 ORDER BY line;

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• When a PL/SQL subprogram fails to compile, Application
Express displays the error number and message text for
the FIRST error.

• You can query USER_ERRORS to see all errors.

Using USER_ERRORS

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• To see all the errors (not just the first one), you query the
USER_ERRORS dictionary table:

• The output of this code is on the next slide.

Using USER_ERRORS

CREATE OR REPLACE PROCEDURE bad_proc
IS BEGIN
 error_1; -- this is an error
 error_2; -- this is another error
END;

SELECT line, text, position -- where and error message
 FROM USER_ERRORS
 WHERE name = 'BAD_PROC' AND type = 'PROCEDURE'
 ORDER BY sequence;

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• The code on the previous slide produces this output:

• USER_ERRORS does not show the source code.
• We can JOIN our query to USER_SOURCE to see the

source code as well. The next slide shows how.

Using USER_ERRORS

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Join USER_SOURCE and USER_ERRORS to see a more
complete picture of the compile errors.

Adding USER_SOURCE

SELECT e.line, e.position, s.text AS SOURCE, e.text AS ERROR
 FROM USER_ERRORS e, USER_SOURCE s
 WHERE e.name = s.name AND e.type = s.type
 AND e.line = s.line
 AND e.name = 'BAD_PROC' and e.type = 'PROCEDURE'
 ORDER BY e.sequence;

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• Construct packages for general use.
• Create the package specification before the body.

• The package specification should contain only those
constructs that you want to be public/global.

• Only recompile the package body, if possible, because
changes to the package specification require recompilation
of all programs that call the package.

• The package specification should contain as few constructs
as possible.

Guidelines for Writing Packages

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• Modularity: Encapsulating related constructs.
• Easier maintenance: Keeping logically related functionality

together.

• Easier application design: Coding and compiling the
specification and body separately.

• Hiding information:
– Only the declarations in the package specification are visible

and accessible to applications.
– Private constructs in the package body are hidden and

inaccessible.
– All coding is hidden in the package body.

Advantages of Using Packages

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

• Added functionality: Persistency of variables and cursors
• Better performance:

– The entire package is loaded into memory when the
package is first referenced.

– There is only one copy in memory for all users.
– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms having the
same name.

Advantages of Using Packages

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Terminology

Key terms used in this lesson included:
• Private components

• Public components
• Visibility

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L2
Managing Package Concepts

Summary

In this lesson, you should have learned how to:
• Explain the difference between public and private package

constructs

• Designate a package construct as either public or private
• Specify the appropriate syntax to drop packages

• Identify views in the Data Dictionary that manage packages
• Identify guidelines for using packages

31

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Components of a PL/SQL Package
	Components of a PL/SQL Package
	Visibility of Package Components
	Visibility of Package Components
	Global/Local Compared to Public/Private
	Global/Local Compared to Public/Private
	Visibility of Global (Public) Components
	Visibility of Global (Public) Components
	Visibility of Local (Private) Components
	Visibility of Local (Private) Components
	Visibility of Local (Private) Components
	Example of Package Specification: salary_pkg:
	Example of Package Body: salary_pkg:
	Example of Package Body: salary_pkg:
	Invoking Package Subprograms
	Invoking Package Subprograms
	Removing Packages
	Viewing Packages in the Data Dictionary
	Using USER_ERRORS
	Using USER_ERRORS
	Using USER_ERRORS
	Adding USER_SOURCE
	Guidelines for Writing Packages
	Advantages of Using Packages
	Advantages of Using Packages
	Terminology
	Summary
	Slide Number 32

