

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
10-3
Advanced Package Concepts

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Objectives

This lesson covers the following objectives:
• Write packages that use the overloading feature

• Write packages that use forward declarations
• Explain the purpose of a package initialization block

• Create and use a bodiless package

• Invoke packaged functions from SQL
• Identify restrictions on using packaged functions in SQL

statements

• Create a package that uses PL/SQL tables and records

 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Purpose

• This lesson introduces additional advanced features of
PL/SQL packages, including overloading, forward
referencing, and a package initialization block.

• It also explains the restrictions on package functions that
are used in SQL statements.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading Subprograms

• The overloading feature in PL/SQL enables you to develop
two or more packaged subprograms with the same name.

• Overloading is useful when you want a subprogram to
accept similar sets of parameters that have different data
types.

• For example, the TO_CHAR function has more than one
way to be called, enabling you to convert a number or a
date to a character string.

 FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
...

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading Subprograms

The overloading feature in PL/SQL:
• Enables you to create two or more subprograms with the

same name, in the same package
• Enables you to build flexible ways for invoking the

overloaded subprograms based on the argument(s)
passed when calling the overloaded subprogram CHAR vs
NUMBER vs DATE)

• Makes things easier for the application developer, who
has to remember only one subprogram name.

• Overloading can be done with subprograms in packages,
but not with stand-alone subprograms.

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading Subprograms

• Consider using overloading when the purposes of two or
more subprograms are similar, but the type or number of
parameters required varies.

• Overloading can provide alternative ways for finding
different data with varying search criteria.

• For example, you might want to find employees by their
employee id, and also provide a way to find employees by
their job id, or by their hire date.

• The purpose is the same, but the parameters or search
criteria differ.

• The next slide shows an example of this.

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading: Example

• The emp_pkg package specification contains an overloaded
procedure called find_emp.

• The input arguments of the three declarations have different
categories of data type.

• Which of the declarations is executed by the following call?

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE find_emp -- 1
 (p_employee_id IN NUMBER, p_last_name OUT VARCHAR2);
 PROCEDURE find_emp -- 2
 (p_job_id IN VARCHAR2, p_last_name OUT VARCHAR2);
 PROCEDURE find_emp -- 3
 (p_hiredate IN DATE, p_last_name OUT VARCHAR2);
END emp_pkg;

DECLARE v_last_name VARCHAR2(30);
BEGIN emp_pkg.find_emp('IT_PROG', v_last_name);
END;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading Restrictions

You cannot overload:
• Two subprograms if their formal parameters differ only in

data type and the different data types are in the same
category (NUMBER and INTEGER belong to the same
category; VARCHAR2 and CHAR belong to the same
category).

• Two functions that differ only in return type, even if the
types are in different categories.

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading Restrictions

• These restrictions apply if the names of the parameters
are also the same.

• If you use different names for the parameters, then you
can invoke the subprograms by using named notation for
the parameters.

• The next slide shows an example of this.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading: Example 2

• Now you invoke a procedure using positional notation:

• This fails because ‘Smith’ can be either CHAR or
VARCHAR2.

• But the following invocation succeeds:

CREATE PACKAGE sample_pack IS
 PROCEDURE sample_proc (p_char_param IN CHAR);
 PROCEDURE sample_proc (p_varchar_param IN VARCHAR2);
END sample_pack;

BEGIN sample_pack.sample_proc('Smith'); END;

BEGIN sample_pack.sample_proc(p_char_param =>'Smith'); END;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• In this example, the dept_pkg package specification

contains an overloaded procedure called add_department.
• The first declaration takes three parameters that are used to

provide data for a new department record inserted into the
department table.

• The second declaration takes only two parameters, because
this version internally generates the department ID through
an Oracle sequence.

Overloading: Example 3

CREATE OR REPLACE PACKAGE dept_pkg IS

 PROCEDURE add_department(p_deptno NUMBER,

 p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

 PROCEDURE add_department(

 p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);

END dept_pkg;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Overloading: Example 3

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
 PROCEDURE add_department (p_deptno NUMBER,

 p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS
 BEGIN
 INSERT INTO departments(department_id,
 department_name, location_id)
 VALUES (p_deptno, p_name, p_loc);
 END add_department;

 PROCEDURE add_department (
 p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS
 BEGIN
 INSERT INTO departments (department_id,
 department_name, location_id)
 VALUES (departments_seq.NEXTVAL, p_name, p_loc);
 END add_department;
 END dept_pkg;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• If you call add_department with an explicitly provided
department ID, then PL/SQL uses the first version of the
procedure.

• Consider the following example:

Overloading: Example 3

BEGIN
 dept_pkg.add_department(980,'Education',2500);
END;

SELECT * FROM departments
WHERE department_id = 980;

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

980 Education - 2500

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• If you call add_department with no department ID,
then PL/SQL uses the second version:

Overloading: Example 3

BEGIN
 dept_pkg.add_department ('Training', 2500);
END;

SELECT * FROM departments
WHERE department_name = 'Training';

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION_ID

290 Training - 2500

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded.

• You have already seen that TO_CHAR is overloaded.

• Another example is the UPPER function:

• You do not prefix STANDARD package subprograms with
the package name.

Overloading and the STANDARD Package

FUNCTION UPPER (ch VARCHAR2) RETURN VARCHAR2;

FUNCTION UPPER (ch CLOB) RETURN CLOB;

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Question: What if you create your own function with the
same name as a STANDARD package function?

• For example, you create your own UPPER function.
• Then you invoke UPPER(argument).
• Which one is executed?
• Answer: even though your function is in your own schema,

the built-in STANDARD function is executed.
• To call your own function, you need to prefix it with your

schema-name:

Overloading and the STANDARD Package

...
BEGIN
 v_return_value := your-schema-name.UPPER(argument);
END;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Block-structured languages (such as PL/SQL) must declare
identifiers before referencing them.

• In the example below, if award_bonus and calc_rating
are private, what will happen?

Using Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
 PROCEDURE award_bonus(...) IS
 BEGIN
 calc_rating (...); --illegal reference
 END;

 PROCEDURE calc_rating (...) IS
 BEGIN
 ...
 END;
END forward_pkg;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• All identifiers must be declared before being used, so you
could solve the illegal reference problem by reversing the
order of the two procedures.

• However, coding standards often require that subprograms
be kept in alphabetical sequence to make them easy to
find.

• In this case, you have the problem on the
previous slide.

• Using forward declarations can solve this
problem.

Using Forward Declarations

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

Using Forward Declarations

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
 PROCEDURE calc_rating (...); -- forward declaration

 -- Subprograms defined in alphabetical order

 PROCEDURE award_bonus(...) IS
 BEGIN
 calc_rating (...); -- resolved by forward declaration
 ...
 END;

 PROCEDURE calc_rating (...) IS -- implementation
 BEGIN
 ...
 END;
END forward_pkg;

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Forward declarations help to:
• Define subprograms in logical or

alphabetical order.

• Define mutually recursive
subprograms.

• Mutually recursive programs
are programs that call each other
directly or indirectly.

• Group and logically organize
subprograms in a package body.

Using Forward Declarations

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

When creating a forward declaration:
• The formal parameters must appear in both the forward

declaration and the subprogram body.

• The subprogram body can appear anywhere after the
forward declaration, but both must appear in the same
package body.

Using Forward Declarations

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Suppose you want to automatically execute some code
every time you make the first call to a package in your
session?

• For example, you want to automatically load a tax rate into
a package variable.

• If the tax rate is a constant, you can initialize the package
variable as part of its declaration:

• But what if the tax rate is stored in a database table?

Package Initialization Block

CREATE OR REPLACE PACKAGE taxes_pkg IS
 g_tax NUMBER := 0.20;
 ...
END taxes_pkg;

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• However, you can include an unnamed block at the end of
the package body to initialize public and private package
variables.

• This block automatically executes once and is used

Package Initialization Block

CREATE OR REPLACE PACKAGE taxes_pkg IS
 g_tax NUMBER;
 ... -- declare all public procedures/functions
END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
 ... -- declare all private variables
 ... -- define public/private procedures/functions
 BEGIN -- unnamed initialization block
 SELECT rate_value INTO g_tax
 FROM tax_rates
 WHERE rate_name = 'TAX';
END taxes_pkg;

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Every package must have two parts, a specification and a
body.

• Right?

• Wrong.
• You can create a useful package which has a specification

but no body.
• This is called a bodiless package.

Bodiless Packages

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Because it has no body, a bodiless package cannot contain
any executable code: no procedures or functions.

• It can contain public (global) variables.

• Bodiless packages are often used to give names to
unchanging constants, or to give names to non-predefined
Oracle Server exceptions.

Bodiless Packages

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

This package gives names to several constant ratios used in
converting distances between two different systems of
measurement.

Bodiless Packages: Example 1

CREATE OR REPLACE PACKAGE global_consts IS
 mile_to_kilo CONSTANT NUMBER := 1.6093;
 kilo_to_mile CONSTANT NUMBER := 0.6214;
 yard_to_meter CONSTANT NUMBER := 0.9144;
 meter_to_yard CONSTANT NUMBER := 1.0936;
END global_consts;

GRANT EXECUTE ON global_consts TO PUBLIC;

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• This package declares two non-predefined Oracle Server
exceptions.

• If we did not define these exceptions in a bodiless

package, how else could we define them?

Bodiless Packages: Example 2

CREATE OR REPLACE PACKAGE our_exceptions IS
 e_cons_violation EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_cons_violation, -2292);
 e_value_too_large EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_value_too_large, -1438);
END our_exceptions;

GRANT EXECUTE ON our_exceptions TO PUBLIC;

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• The block below converts 5,000 miles to kilometers using
the constant defined in the GLOBAL_CONSTS package.

• To test this code, create the GLOBAL_CONSTS package
using the code on slide #25, then run the code above.

Invoking a Bodiless Package

DECLARE
 distance_in_miles NUMBER(5) := 5000;
 distance_in_kilo NUMBER(6,2);
BEGIN
 distance_in_kilo :=
 distance_in_miles * global_consts.mile_to_kilo;
 DBMS_OUTPUT.PUT_LINE(distance_in_kilo);
END;

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• The block below uses the exception defined in the
OUR_EXCEPTIONS package.

• To test this code, create the OUR_EXCEPTIONS package

using the code on slide #26, then create the
EXCEP_TEST table using:

Invoking a Bodiless Package

BEGIN
 INSERT INTO excep_test (number_col) VALUES (12345);
EXCEPTION
 WHEN our_exceptions.e_value_too_large THEN
 DBMS_OUTPUT.PUT_LINE('Value too big for column data
 type');
END;

CREATE TABLE excep_test (number_col NUMBER(3));

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Restrictions on Using Package Functions in
SQL Statements

• Package functions, like standalone functions, can be used in
SQL statements and they must follow the same rules.

• Functions called from:
– A query or DML statement must not end the current transaction,

create or roll back to a savepoint, or alter the system or session.
– A query or a parallelized DML statement cannot execute a DML

statement or modify the database.
– A DML statement cannot read or modify the table being changed

by that DML statement.
– Note: A function calling subprograms that break the preceding

restrictions is not allowed.

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Package Function in SQL: Example 1

CREATE OR REPLACE PACKAGE taxes_pkg IS
 FUNCTION tax (p_value IN NUMBER) RETURN NUMBER;
END taxes_pkg;

CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
 FUNCTION tax (p_value IN NUMBER) RETURN NUMBER IS
 v_rate NUMBER := 0.08;
 BEGIN
 RETURN (p_value * v_rate);
 END tax;
END taxes_pkg;

SELECT taxes_pkg.tax(salary), salary, last_name
 FROM employees;

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Package Function in SQL: Example 2

CREATE OR REPLACE PACKAGE sal_pkg IS
 FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER;
END sal_pkg;

CREATE OR REPLACE PACKAGE BODY sal_pkg IS
 FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER IS
 v_sal employees.salary%TYPE;
 BEGIN
 UPDATE employees SET salary = salary * 2
 WHERE employee_id = p_emp_id;
 SELECT salary INTO v_sal FROM employees
 WHERE employee_id = p_emp_id;
 RETURN (v_sal);
 END sal;
END sal_pkg;

SELECT sal_pkg.sal(100), salary, last_name
 FROM employees;

33

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Earlier in the course, you learned how to declare and use
composite data types such as records, either by using
%ROWTYPE or by declaring your own TYPE.

• What if you want to use a whole record as a procedure
parameter?

• For example, you want your procedure to SELECT a
whole row (many columns) from the EMPLOYEES table
and pass it back to the calling environment.

• The data type of a parameter can be any kind of PL/SQL
variable, scalar or composite.

• The next slide shows how.

Using a Record Structure as a Parameter

34

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Create the procedure:

• And invoke it from an anonymous block:

Using a Record Structure as a Parameter

CREATE OR REPLACE PROCEDURE sel_one_emp
 (p_emp_id IN employees.employee_id%TYPE,
 p_emprec OUT employees%ROWTYPE)
IS BEGIN
 SELECT * INTO p_emprec FROM employees
 WHERE employee_id = p_emp_id;
EXCEPTION
 WHEN NO_DATA_FOUND THEN ...
END sel_one_emp;

DECLARE
 v_emprec employees%ROWTYPE;
BEGIN
 sel_one_emp(100, v_emprec);
 ...
 dbms_output.put_line(v_emprec.last_name);
 ...
END;

35

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• You can also use your own declared types as parameters,
but you need to be careful.

• What is wrong with this code?

Using a User-defined Type as a Parameter

CREATE OR REPLACE PROCEDURE sel_emp_dept
 (p_emp_id IN employees.employee_id%TYPE,
 p_emp_dept_rec OUT ed_type)
IS
 TYPE ed_type IS RECORD (f_name employees.first_name%TYPE,
 l_name employees.last_name%TYPE,
 d_name
departments.department_name%TYPE);
BEGIN
 SELECT e.first_name, e.last_name, d.department_name
 INTO ed_type.f_name, ed_type.l_name, ed_type.d_name
 FROM employees e JOIN departments d USING (employee_id)
 WHERE employee_id = p_emp_id;
END sel_emp_dept;

36

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Types must be declared before you can use them.
• And in a standalone procedure or function, the parameters

(and their data types) are declared in the subprogram
header, before we can declare our own types.

• So how can we declare a type before declaring a parameter
of that type?

• We must create a package.

• We declare the type in the specification, before declaring
any procedures or functions which have parameters of that
type.

Using a User-defined Type as a Parameter

37

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

ED_TYPE is declared globally in the specification and can
be used outside the package.

Using a User-defined Type as a Parameter

CREATE OR REPLACE PACKAGE emp_dept_pkg
IS
 TYPE ed_type IS RECORD (f_name employees.first_name%TYPE,
 l_name employees.last_name%TYPE,
 d_name departments.department_name%TYPE);
 PROCEDURE sel_emp_dept
 (p_emp_id IN employees.employee_id%TYPE,
 p_emp_dept_rec OUT ed_type);
END emp_dept_pkg;
-- And create the package body as usual

DECLARE
 v_emp_dept_rec emp_dept_pkg.ed_type;
BEGIN
 emp_dept_pkg.sel_emp_dept(100, v_emprec);
END;

38

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

• Because an INDEX BY table is also a kind of variable, it can
be declared in a package specification.

• This allows it to be used by any subprogram within and
outside the package:

Using an INDEX BY Table of Records in a
Package

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emprec_type IS TABLE OF employees%ROWTYPE
 INDEX BY BINARY_INTEGER;
 PROCEDURE get_employees(p_emp_table OUT emprec_type);
END emp_pkg;

39

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

The procedure uses a cursor to populate the INDEX BY table
with employee rows, and return this data in a single OUT
parameter.

Using an INDEX BY Table of Records in a
Package

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 PROCEDURE get_employees(p_emp_table OUT emprec_type) IS
 BEGIN
 FOR emp_record IN (SELECT * FROM employees)
 LOOP
 p_emp_table(emp_record.employee_id) := emp_record;
 END LOOP;
 END get_employees;
END emp_pkg;

40

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

By creating the EMP_PKG package, the entire EMPLOYEES
table can be fetched with a single procedure call where ever
it is needed.

Using an INDEX BY Table of Records in a
Package

DECLARE
 v_emp_table emp_pkg.emprec_type;
BEGIN
 emp_pkg.read_emp_table(v_emp_table);
 FOR i IN v_emp_table.FIRST..v_emp_table.LAST
 LOOP
 IF v_emp_table.EXISTS(i) THEN
 DBMS_OUTPUT.PUT_LINE(v_emp_table(i).employee_id ...);
 END IF;
 END LOOP;
END;

41

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Terminology

Key terms used in this lesson included:
• Bodiless package

• Forward declaration
• Initialization block

• Overloading
• STANDARD

42

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S10L3
Advanced Package Concepts

Summary

In this lesson, you should have learned how to:
• Write packages that use the overloading feature

• Write packages that use forward declarations
• Explain the purpose of a package initialization block

• Create and use a bodiless package

• Invoke packaged functions from SQL
• Identify restrictions on using packaged functions in SQL

statements

• Create a package that uses PL/SQL tables and records

 43

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Overloading Subprograms
	Overloading Subprograms
	Overloading Subprograms
	Overloading: Example
	Overloading Restrictions
	Overloading Restrictions
	Overloading: Example 2
	Overloading: Example 3
	Overloading: Example 3
	Overloading: Example 3
	Overloading: Example 3
	Overloading and the STANDARD Package
	Overloading and the STANDARD Package
	Using Forward Declarations
	Using Forward Declarations
	Using Forward Declarations
	Using Forward Declarations
	Using Forward Declarations
	Package Initialization Block
	Package Initialization Block
	Bodiless Packages
	Bodiless Packages
	Bodiless Packages: Example 1
	Bodiless Packages: Example 2
	Invoking a Bodiless Package
	Invoking a Bodiless Package
	Restrictions on Using Package Functions in SQL Statements
	Package Function in SQL: Example 1
	Package Function in SQL: Example 2
	Using a Record Structure as a Parameter
	Using a Record Structure as a Parameter
	Using a User-defined Type as a Parameter
	Using a User-defined Type as a Parameter
	Using a User-defined Type as a Parameter
	Using an INDEX BY Table of Records in a Package
	Using an INDEX BY Table of Records in a Package
	Using an INDEX BY Table of Records in a Package
	Terminology
	Summary
	Slide Number 44

