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Objectives 

This lesson covers the following objectives: 
• Write packages that use the overloading feature 

• Write packages that use forward declarations 
• Explain the purpose of a package initialization block 

• Create and use a bodiless package 

• Invoke packaged functions from SQL 
• Identify restrictions on using packaged functions in SQL 

statements 

• Create a package that uses PL/SQL tables and records 
 
 3 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S10L3 
Advanced Package Concepts 

Purpose  

• This lesson introduces additional advanced features of 
PL/SQL packages, including overloading, forward 
referencing, and a package initialization block. 

• It also explains the restrictions on package functions that 
are used in SQL statements. 
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Overloading Subprograms 

• The overloading feature in PL/SQL enables you to develop 
two or more packaged subprograms with the same name. 

•  Overloading is useful when you want a subprogram to 
accept similar sets of parameters that have different data 
types.  

• For example, the TO_CHAR function has more than one 
way to be called, enabling you to convert a number or a 
date to a character string. 

 FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2; 
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2; 
... 
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Overloading Subprograms 

The overloading feature in PL/SQL: 
• Enables you to create two or more subprograms with the 

same name, in the same package 
• Enables you to build flexible ways for invoking the 

overloaded subprograms based on the argument(s) 
passed when calling the overloaded subprogram CHAR vs 
NUMBER vs DATE) 

• Makes things easier for the application developer, who 
has to remember only one subprogram name. 

• Overloading can be done with subprograms in packages, 
but not with stand-alone subprograms. 
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Overloading Subprograms 

• Consider using overloading when the purposes of two or 
more subprograms are similar, but the type or number of 
parameters required varies. 

• Overloading can provide alternative ways for finding 
different data with varying search criteria.  

• For example, you might want to find employees by their 
employee id, and also provide a way to find employees by 
their job id, or by their hire date.  

• The purpose is the same, but the parameters or search 
criteria differ. 

• The next slide shows an example of this. 
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Overloading: Example 

 

 

 
 

• The emp_pkg package specification contains an overloaded 
procedure called find_emp.  

• The input arguments of the three declarations have different 
categories of data type.  

• Which of the declarations is executed by the following call? 

CREATE OR REPLACE PACKAGE emp_pkg IS 
  PROCEDURE find_emp                                    -- 1 
   (p_employee_id IN NUMBER, p_last_name OUT VARCHAR2);  
  PROCEDURE find_emp                                    -- 2 
   (p_job_id IN VARCHAR2, p_last_name OUT VARCHAR2);    
  PROCEDURE find_emp                                    -- 3 
   (p_hiredate IN DATE, p_last_name OUT VARCHAR2);   
END emp_pkg; 

DECLARE  v_last_name   VARCHAR2(30); 
BEGIN    emp_pkg.find_emp('IT_PROG', v_last_name);     
END;  
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Overloading Restrictions 

You cannot overload: 
• Two subprograms if their formal parameters differ only in 

data type and the different data types are in the same 
category (NUMBER and INTEGER belong to the same 
category; VARCHAR2 and CHAR belong to the same 
category). 

• Two functions that differ only in return type, even if the 
types are in different categories. 
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Overloading Restrictions 

• These restrictions apply if the names of the parameters 
are also the same.  

• If you use different names for the parameters, then you 
can invoke the subprograms by using named notation for 
the parameters.  

• The next slide shows an example of this. 
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Overloading: Example 2 

 

 
• Now you invoke a procedure using positional notation: 

 
• This fails because ‘Smith’ can be either CHAR or 
VARCHAR2.  

• But the following invocation succeeds: 

CREATE PACKAGE sample_pack IS 
  PROCEDURE  sample_proc (p_char_param IN CHAR); 
  PROCEDURE  sample_proc (p_varchar_param IN VARCHAR2); 
END sample_pack; 
 

BEGIN   sample_pack.sample_proc('Smith');   END;  

BEGIN sample_pack.sample_proc(p_char_param =>'Smith');  END;  
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• In this example, the dept_pkg package specification 

contains an overloaded procedure called add_department.  
• The first declaration takes three parameters that are used to 

provide data for a new department record inserted into the 
department table.  

• The second declaration takes only two parameters, because 
this version internally generates the department ID through  
an Oracle sequence. 

Overloading: Example 3 

CREATE OR REPLACE PACKAGE dept_pkg IS 

  PROCEDURE add_department(p_deptno NUMBER, 

    p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700); 

  PROCEDURE add_department( 

    p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700); 

END dept_pkg; 
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Overloading: Example 3 

CREATE OR REPLACE PACKAGE BODY dept_pkg  IS 
  PROCEDURE add_department (p_deptno NUMBER,  

    p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS 
  BEGIN 
    INSERT INTO departments(department_id,  
      department_name, location_id) 
      VALUES  (p_deptno, p_name, p_loc); 
  END add_department; 
 
  PROCEDURE add_department ( 
    p_name VARCHAR2:='unknown', p_loc NUMBER:=1700) IS 
  BEGIN 
    INSERT INTO departments (department_id, 
      department_name, location_id) 
      VALUES (departments_seq.NEXTVAL, p_name, p_loc); 
  END add_department; 
 END dept_pkg; 
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• If you call add_department with an explicitly provided 
department ID, then PL/SQL uses the first version of the 
procedure.  

• Consider the following example: 
 

 

Overloading: Example 3 

BEGIN 
  dept_pkg.add_department(980,'Education',2500); 
END; 
 
SELECT * FROM departments 
WHERE department_id = 980; 

DEPARTMENT_ID   DEPARTMENT_NAME  MANAGER_ID  LOCATION_ID 

980      Education               -         2500 
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• If you call add_department with no department ID, 
then PL/SQL uses the second version: 

Overloading: Example 3 

BEGIN 
  dept_pkg.add_department ('Training', 2500); 
END; 
 
SELECT * FROM departments 
WHERE department_name = 'Training'; 

DEPARTMENT_ID   DEPARTMENT_NAME  MANAGER_ID  LOCATION_ID 

290      Training                   -     2500 
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• A package named STANDARD defines the PL/SQL 
environment and built-in functions. 

• Most built-in functions are overloaded. 

• You have already seen that TO_CHAR is overloaded.  

• Another  example is the UPPER function: 

 
 

• You do not prefix STANDARD package subprograms with 
the package name. 

 

Overloading and the STANDARD Package 

FUNCTION UPPER (ch VARCHAR2) RETURN VARCHAR2; 
 
FUNCTION UPPER (ch CLOB) RETURN CLOB; 
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• Question: What if you create your own function with the 
same name as a STANDARD package function?  

• For example, you create your own UPPER function.  
• Then you invoke UPPER(argument).  
• Which one is executed? 
• Answer: even though your function is in your own schema, 

the built-in STANDARD function is executed.  
• To call your own function, you need to prefix it with your 

schema-name: 
 

Overloading and the STANDARD Package 

... 
BEGIN 
  v_return_value := your-schema-name.UPPER(argument); 
END; 
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• Block-structured languages (such as PL/SQL) must declare 
identifiers before referencing them. 

• In the example below, if award_bonus and calc_rating 
are private, what will happen? 
 

 
 

 
 

Using Forward Declarations 

CREATE OR REPLACE PACKAGE BODY forward_pkg IS 
  PROCEDURE award_bonus(...) IS 
  BEGIN 
    calc_rating (...);    --illegal reference 
  END; 
   
  PROCEDURE calc_rating (...) IS 
  BEGIN 
    ... 
  END; 
END forward_pkg; 
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• All identifiers must be declared before being used, so you 
could solve the illegal reference problem by reversing the 
order of the two procedures.  

• However, coding standards often require that subprograms 
be kept in alphabetical sequence to make them easy to 
find.  

• In this case, you have the problem on the                                          
previous slide.  

• Using forward declarations can solve this                                             
problem. 

Using Forward Declarations 

19 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S10L3 
Advanced Package Concepts 

In the package body, a forward declaration is a private 
subprogram specification terminated by a semicolon. 

Using Forward Declarations 

CREATE OR REPLACE PACKAGE BODY forward_pkg IS 
  PROCEDURE calc_rating (...);   -- forward declaration   
 
  -- Subprograms defined in alphabetical order 
 
  PROCEDURE award_bonus(...) IS 
  BEGIN 
    calc_rating (...);           -- resolved by forward declaration 
    ... 
  END; 
  
  PROCEDURE calc_rating (...) IS -- implementation 
  BEGIN 
    ... 
  END; 
END forward_pkg; 
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Forward declarations help to: 
• Define subprograms in logical or                                               

alphabetical order. 

• Define mutually recursive                                                         
subprograms.  

• Mutually recursive programs                                                                          
are programs that call each other                                                      
directly or indirectly. 

• Group and logically organize                                                      
subprograms in a package body. 

Using Forward Declarations 
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When creating a forward declaration: 
• The formal parameters must appear in both the forward 

declaration and the subprogram body. 

• The subprogram body can appear anywhere after the 
forward declaration, but both must appear in the same 
package body. 

Using Forward Declarations 

22 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S10L3 
Advanced Package Concepts 

• Suppose you want to automatically execute some code 
every time you make the first call to a package in your 
session?  

• For example, you want to automatically load a tax rate into 
a package variable. 

• If the tax rate is a constant, you can initialize the package 
variable as part of its declaration: 
 
 

 
 
• But what if the tax rate is stored in a database table? 

Package Initialization Block 

CREATE OR REPLACE PACKAGE taxes_pkg IS 
  g_tax   NUMBER  := 0.20; 
  ...   
END taxes_pkg; 
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• However, you can include an unnamed block at the end of 
the package body to initialize public and private package 
variables.  

• This block automatically executes once and is used 
 

 

Package Initialization Block 

CREATE OR REPLACE PACKAGE taxes_pkg IS 
  g_tax   NUMBER; 
  ...   -- declare all public procedures/functions 
END taxes_pkg; 
 
CREATE OR REPLACE PACKAGE BODY taxes_pkg IS 
  ...   -- declare all private variables 
  ...   -- define public/private procedures/functions 
 BEGIN  -- unnamed initialization block 
   SELECT   rate_value INTO g_tax 
     FROM     tax_rates 
     WHERE    rate_name = 'TAX'; 
END taxes_pkg; 
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• Every package must have two parts, a specification and a 
body.  

• Right?  

• Wrong.  
• You can create a useful package which has a specification 

but no body.  
• This is called a bodiless package.  

Bodiless Packages 
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• Because it has no body, a bodiless package cannot contain 
any executable code: no procedures or functions.  

• It can contain public (global) variables.  

• Bodiless packages are often used to give names to 
unchanging constants, or to give names to non-predefined 
Oracle Server exceptions. 

Bodiless Packages 
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This package gives names to several constant ratios used in 
converting distances between two different systems of 
measurement. 

Bodiless Packages: Example 1 

CREATE OR REPLACE PACKAGE global_consts IS 
  mile_to_kilo    CONSTANT  NUMBER  :=  1.6093; 
  kilo_to_mile    CONSTANT  NUMBER  :=  0.6214; 
  yard_to_meter   CONSTANT  NUMBER  :=  0.9144; 
  meter_to_yard   CONSTANT  NUMBER  :=  1.0936; 
END global_consts; 
 
GRANT EXECUTE ON global_consts TO PUBLIC;  
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• This package declares two non-predefined Oracle Server 
exceptions. 
 
 
 
 

 
• If we did not define these exceptions in a bodiless 

package, how else could we define them?  

Bodiless Packages: Example 2 

CREATE OR REPLACE PACKAGE our_exceptions IS 
  e_cons_violation     EXCEPTION; 
  PRAGMA EXCEPTION_INIT (e_cons_violation, -2292); 
  e_value_too_large    EXCEPTION; 
  PRAGMA EXCEPTION_INIT (e_value_too_large, -1438); 
END our_exceptions; 
 
GRANT EXECUTE ON our_exceptions TO PUBLIC;  
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• The block below converts 5,000 miles to kilometers using 
the constant defined in the GLOBAL_CONSTS package.  

 
 
 
 
 

• To test this code, create the GLOBAL_CONSTS package 
using the code on slide #25, then run the code above. 
 

 

Invoking a Bodiless Package 

DECLARE 
  distance_in_miles  NUMBER(5) := 5000; 
  distance_in_kilo   NUMBER(6,2); 
BEGIN 
  distance_in_kilo := 
    distance_in_miles * global_consts.mile_to_kilo; 
  DBMS_OUTPUT.PUT_LINE(distance_in_kilo); 
END; 
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• The block below uses the exception defined in the 
OUR_EXCEPTIONS package.   
 
 
 

 
• To test this code, create the OUR_EXCEPTIONS package 

using the code on slide #26, then create the 
EXCEP_TEST table using: 

 

 

Invoking a Bodiless Package 

BEGIN 
  INSERT INTO excep_test (number_col) VALUES (12345); 
EXCEPTION 
  WHEN our_exceptions.e_value_too_large THEN 
    DBMS_OUTPUT.PUT_LINE('Value too big for column data   
                         type'); 
END; 
 

CREATE TABLE excep_test (number_col  NUMBER(3)); 
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Restrictions on Using Package Functions in 
SQL Statements 

• Package functions, like standalone functions, can be used in 
SQL statements and they must follow the same rules. 

• Functions called from: 
– A query or DML statement must not end the current transaction, 

create or roll back to a savepoint, or alter the system or session. 
– A query or a parallelized DML statement cannot execute a DML 

statement or modify the database. 
– A DML statement cannot read or modify the table being changed 

by that DML statement. 
– Note: A function calling subprograms that break the preceding 

restrictions is not allowed. 
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Package Function in SQL: Example 1 

CREATE OR REPLACE PACKAGE taxes_pkg IS 
  FUNCTION tax (p_value IN NUMBER) RETURN NUMBER; 
END taxes_pkg; 
 
CREATE OR REPLACE PACKAGE BODY taxes_pkg IS 
  FUNCTION tax (p_value IN NUMBER) RETURN NUMBER IS 
    v_rate NUMBER := 0.08; 
  BEGIN 
    RETURN (p_value * v_rate); 
  END tax; 
END taxes_pkg; 
 

SELECT taxes_pkg.tax(salary), salary, last_name 
  FROM employees; 
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Package Function in SQL: Example 2 

CREATE OR REPLACE PACKAGE sal_pkg IS 
  FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER; 
END sal_pkg; 
 
CREATE OR REPLACE PACKAGE BODY sal_pkg IS 
  FUNCTION sal (p_emp_id IN NUMBER) RETURN NUMBER IS 
    v_sal  employees.salary%TYPE; 
  BEGIN 
    UPDATE employees SET salary = salary * 2 
      WHERE employee_id = p_emp_id; 
    SELECT salary INTO v_sal FROM employees 
      WHERE employee_id = p_emp_id; 
    RETURN (v_sal); 
  END sal; 
END sal_pkg; 
 

SELECT sal_pkg.sal(100), salary, last_name 
  FROM employees; 
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• Earlier in the course, you learned how to declare and use 
composite data types such as records, either by using 
%ROWTYPE or by declaring your own TYPE. 

• What if you want to use a whole record as a procedure 
parameter?  

• For example, you want your procedure to SELECT a 
whole row (many columns) from the EMPLOYEES table 
and pass it back to the calling environment. 

• The data type of a parameter can be any kind of PL/SQL 
variable, scalar or composite.  

• The next slide shows how. 

 

Using a Record Structure as a Parameter 
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• Create the procedure: 
 

 
 

 

• And invoke it from an anonymous block: 

Using a Record Structure as a Parameter  

CREATE OR REPLACE PROCEDURE sel_one_emp 
  (p_emp_id   IN  employees.employee_id%TYPE, 
   p_emprec   OUT employees%ROWTYPE) 
IS BEGIN 
  SELECT * INTO p_emprec FROM employees 
    WHERE employee_id = p_emp_id; 
EXCEPTION 
  WHEN NO_DATA_FOUND THEN ... 
END sel_one_emp; 

DECLARE 
  v_emprec   employees%ROWTYPE; 
BEGIN 
  sel_one_emp(100, v_emprec); 
  ... 
  dbms_output.put_line(v_emprec.last_name); 
  ... 
END; 
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• You can also use your own declared types as parameters, 
but you need to be careful.  

• What is wrong with this code? 

Using a User-defined Type as a Parameter 

CREATE OR REPLACE PROCEDURE sel_emp_dept 
  (p_emp_id       IN  employees.employee_id%TYPE, 
   p_emp_dept_rec OUT ed_type) 
IS 
  TYPE ed_type IS RECORD (f_name employees.first_name%TYPE, 
                          l_name employees.last_name%TYPE, 
                          d_name 
departments.department_name%TYPE);   
BEGIN 
  SELECT e.first_name, e.last_name, d.department_name 
    INTO ed_type.f_name, ed_type.l_name, ed_type.d_name 
    FROM employees e JOIN departments d USING (employee_id) 
    WHERE employee_id = p_emp_id; 
END sel_emp_dept; 
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• Types must be declared before you can use them.  
• And in a standalone procedure or function, the parameters 

(and their data types) are declared in the subprogram 
header, before we can declare our own types. 

• So how can we declare a type before declaring a parameter 
of that type?  

• We must create a package. 

• We declare the type in the specification, before declaring 
any procedures or functions which have parameters of that 
type. 

 

Using a User-defined Type as a Parameter 
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ED_TYPE is declared globally in the specification and can 
be used outside the package. 

Using a User-defined Type as a Parameter 

CREATE OR REPLACE PACKAGE emp_dept_pkg 
IS 
  TYPE ed_type IS RECORD (f_name employees.first_name%TYPE, 
                          l_name employees.last_name%TYPE, 
                          d_name departments.department_name%TYPE); 
  PROCEDURE sel_emp_dept 
        (p_emp_id       IN  employees.employee_id%TYPE, 
         p_emp_dept_rec OUT ed_type); 
END emp_dept_pkg; 
-- And create the package body as usual 

DECLARE 
  v_emp_dept_rec   emp_dept_pkg.ed_type; 
BEGIN 
  emp_dept_pkg.sel_emp_dept(100, v_emprec); 
END; 
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• Because an INDEX BY table is also a kind of variable, it can 
be declared in a package specification.  

• This allows it to be used by any subprogram within and 
outside the package: 

 
 
 

 
 

Using an INDEX BY Table of Records in a 
Package 

CREATE OR REPLACE PACKAGE emp_pkg IS 
  TYPE emprec_type IS TABLE OF employees%ROWTYPE 
     INDEX BY BINARY_INTEGER; 
  PROCEDURE get_employees(p_emp_table OUT emprec_type); 
END emp_pkg; 
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The procedure uses a cursor to populate the INDEX BY table 
with employee rows, and return this data in a single OUT 
parameter. 
 

Using an INDEX BY Table of Records in a 
Package  

CREATE OR REPLACE PACKAGE BODY emp_pkg IS 
  PROCEDURE get_employees(p_emp_table OUT emprec_type) IS 
  BEGIN 
    FOR emp_record IN (SELECT * FROM employees)  
    LOOP 
      p_emp_table(emp_record.employee_id) := emp_record; 
    END LOOP; 
  END get_employees; 
END emp_pkg; 
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By creating the EMP_PKG package, the entire EMPLOYEES 
table can be fetched with a single procedure call where ever 
it is needed.  

Using an INDEX BY Table of Records in a 
Package 

DECLARE 
  v_emp_table  emp_pkg.emprec_type; 
BEGIN 
  emp_pkg.read_emp_table(v_emp_table); 
  FOR i IN v_emp_table.FIRST..v_emp_table.LAST  
  LOOP 
    IF v_emp_table.EXISTS(i) THEN 
      DBMS_OUTPUT.PUT_LINE(v_emp_table(i).employee_id ...); 
    END IF; 
  END LOOP; 
END; 
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Terminology 

Key terms used in this lesson included: 
• Bodiless package 

• Forward declaration 
• Initialization block 

• Overloading 
• STANDARD 
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Summary 

In this lesson, you should have learned how to: 
• Write packages that use the overloading feature 

• Write packages that use forward declarations 
• Explain the purpose of a package initialization block 

• Create and use a bodiless package 

• Invoke packaged functions from SQL 
• Identify restrictions on using packaged functions in SQL 

statements 

• Create a package that uses PL/SQL tables and records 
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