

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
11-1
Persistent State of Package Variables

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Objectives

This lesson covers the following objectives:
• Identify persistent states of package variables

• Control the persistent state of a package cursor

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Purpose

• Suppose you connect to the database and modify the
value in a package variable, for example from 10 to 20.

• Later, you (or someone else) invoke the package again to
read the value of the variable.

• What will you/they see: 10 or 20? It depends!

• Real applications often invoke the same package many
times.

• It is important to understand when the values in package
variables are kept (persist) and when they are lost.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Package State

• The collection of package variables and their current
values define the package state.

• The package state is:
– Initialized when the package is first loaded
– Persistent (by default) for the life of the session
– Stored in the session’s private memory area
– Unique to each session even if the second session is started

by the same user
– Subject to change when package subprograms are called or

public variables are modified.
• Other sessions each have their own package state, and do

not see your changes.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Example of Package State

• The following is a simple package that initializes a single
global variable and contains a procedure to update it.

• SCOTT and JONES call the procedure to update the variable.
CREATE OR REPLACE PACKAGE pers_pkg IS
 g_var NUMBER := 10;
 PROCEDURE upd_g_var (p_var IN NUMBER);
END pers_pkg;

CREATE OR REPLACE PACKAGE BODY pers_pkg IS
 PROCEDURE upd_g_var (p_var IN NUMBER) IS
 BEGIN
 g_var := p_var;
 END upd_g_var;
END pers_pkg;

GRANT EXECUTE ON pers_pkg TO SCOTT, JONES;

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Example of Package State

The following sequence of events occurs:

Time Event State for: Scott Jones
9:00 Scott> .. svar := pers_pkg.g_var; 10 --

9:30

Jones> .. jvar := pers_pks.g_var;
Jones> .. pers_pkg.upd_g_var(20);
Scott> .. svar := pers_pkg.g_var;

10

10
20

9:35

Scott> .. pers_pkg.upd_g_var(50);
Jones> .. jvar := pers_pks.g_var;

50

20

10:00

Scott disconnects and reconnects
İn a new session

10:05 Scott> .. svar := pers_pkg.g_var; 10

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Example of Package State

Explanation of the events on the previous slide:
• At 9:00: Scott connects and reads the variable, seeing the

initialized value 10.
• At 9:30: Jones connects and also reads the variable, also

seeing the initialized value 10.
• At this point there are two separate and independent copies

of the value, one in each session’s private memory area.
• Jones now updates his own session’s value to 20 using the

procedure.
• Scott then re-reads the variable but does not see Jones’s

change.

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Example of Package State

• At 9:35: Scott updates his own session’s value to 50.
Again, Jones cannot see the change.

• At 10:00: Scott disconnects and reconnects, creating a
new session.

• At 10:05: Scott reads the variable and sees the initialized
value 10.

• These changes would not be visible in other sessions
even if both sessions are connected under the same user
name.

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Persistent State of a Package Cursor

• A cursor declared in the package specification is a type of
global variable, and follows the same persistency rules as
any other variable.

• A cursor’s state is not defined by a single numeric or other
value.

• A cursor’s state consists of the following attributes:
– Whether the cursor is open or closed
– If open, how many rows have been fetched from the cursor
(%ROWCOUNT) and whether the most recent fetch was
successful (%FOUND or %NOTFOUND).

• The next three slides show the definition of a cursor and its
repeated use in a calling application.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Persistent State of a Package Cursor:
Package Specification

• The cursor declaration is declared globally within the
package specification.

• Therefore, any or all of the package procedures can
reference it.
CREATE OR REPLACE PACKAGE curs_pkg IS
 CURSOR emp_curs IS SELECT employee_id FROM employees
 ORDER BY employee_id;
 PROCEDURE open_curs;
 FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN;
 PROCEDURE close_curs;
END curs_pkg;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Persistent State of a Package Cursor:
Package Body
CREATE OR REPLACE PACKAGE BODY curs_pkg IS
 PROCEDURE open_curs IS
 BEGIN
 IF NOT emp_curs%ISOPEN THEN OPEN emp_curs; END IF;
 END open_curs;
 FUNCTION fetch_n_rows(n NUMBER := 1) RETURN BOOLEAN IS
 emp_id employees.employee_id%TYPE;
 BEGIN
 FOR count IN 1 .. n LOOP
 FETCH emp_curs INTO emp_id;
 EXIT WHEN emp_curs%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Id: ' ||(emp_id));
 END LOOP;
 RETURN emp_curs%FOUND;
 END fetch_n_rows;
 PROCEDURE close_curs IS BEGIN
 IF emp_curs%ISOPEN THEN CLOSE emp_curs; END IF;
 END close_curs;
END curs_pkg;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

• Step 1 opens the cursor.
• Step 2 (in a loop) fetches and displays the next three rows

from the cursor until all rows have been fetched.
• Step 3 closes the cursor.

Invoking CURS_PKG

DECLARE
 v_more_rows_exist BOOLEAN := TRUE;
BEGIN
 curs_pkg.open_curs; --1
 LOOP
 v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
 DBMS_OUTPUT.PUT_LINE('-------');
 EXIT WHEN NOT v_more_rows_exist;
 END LOOP;
 curs_pkg.close_curs; --3
END;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

• The first looped call to fetch_n_rows displays the first
three rows.

• The second time round the loop, the next three rows are
fetched and displayed.

• And so on.
• This technique is often used in applications that need to
FETCH a large number of rows from a cursor, but can only
display a few of them on the screen at a time.

Invoking CURS_PKG

DECLARE
 v_more_rows_exist BOOLEAN := TRUE;
BEGIN
 curs_pkg.open_curs; --1
 LOOP
 v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
 DBMS_OUTPUT.PUT_LINE('-------');
 EXIT WHEN NOT v_more_rows_exist;
 END LOOP;
 curs_pkg.close_curs; --3
END;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

• This technique is often used in applications that need to
FETCH a large number of rows from a cursor

• But this technique can only display a few of them on the
screen at a time.

Invoking CURS_PKG

DECLARE
 v_more_rows_exist BOOLEAN := TRUE;
BEGIN
 curs_pkg.open_curs; --1
 LOOP
 v_more_rows_exist := curs_pkg.fetch_n_rows(3); --2
 DBMS_OUTPUT.PUT_LINE('-------');
 EXIT WHEN NOT v_more_rows_exist;
 END LOOP;
 curs_pkg.close_curs; --3
END;

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Terminology

Key terms used in this lesson included:
• Package state

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S11L1
Persistent State of Package Variables

Summary

In this lesson, you should have learned how to:
• Identify persistent states of package variables

• Control the persistent state of a package cursor

17

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Package State
	Example of Package State
	Example of Package State
	Example of Package State
	Example of Package State
	Persistent State of a Package Cursor
	Persistent State of a Package Cursor: Package Specification
	Persistent State of a Package Cursor: Package Body
	Invoking CURS_PKG
	Invoking CURS_PKG
	Invoking CURS_PKG
	Terminology
	Summary
	Slide Number 18

