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Objectives 

This lesson covers the following objectives: 
• Recall the stages through which all SQL statements pass 

• Describe the reasons for using dynamic SQL to create a SQL 
statement 

• List four PL/SQL statements supporting Native Dynamic SQL 
• Describe the benefits of EXECUTE IMMEDIATE over 
DBMS_SQL for Dynamic SQL 
 
 
 
 
 

3 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L1 
Using Dynamic SQL 

Purpose  

• In this lesson, you learn to construct and execute SQL 
statements dynamically—in other words, at run time 
using the Native Dynamic SQL statements in PL/SQL.  

• Dynamically executing SQL and PL/SQL code extends the 
capabilities of PL/SQL beyond query and transactional 
operations. 

• The lesson also compares Native Dynamic SQL to the 
DBMS_SQL package, which provides similar capabilities. 

4 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L1 
Using Dynamic SQL 

Execution Flow of SQL 

• All SQL statements in the database go through various 
stages: 
– Parse: Pre-execution “is this possible?” checks syntax, object 

existence, privileges, and so on 
– Bind: Getting the actual values of any variables referenced in 

the statement 
– Execute: The statement is executed. 
– Fetch: Results are returned to the user. 

• Some stages might not be relevant for all statements; for 
example, the fetch phase is applicable to queries but not 
DML. 
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Execution Flow of SQL in PL/SQL 
Subprograms 

• When a SQL statement is included in a PL/SQL subprogram, 
the parse and bind phases are normally done at compile 
time, that is, when the procedure, function, or package 
body is CREATEd. 

• What if the text of the SQL statement is not                          
known when the procedure is created?  
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Execution Flow of SQL in PL/SQL 
Subprograms 

• How could the Oracle server parse it?   
• It couldn’t.  
• For example, suppose you want to DROP a table, but the 

user enters the table name at execution time: 
CREATE PROCEDURE drop_any_table(p_table_name 
VARCHAR2) 
IS BEGIN 
  DROP TABLE p_table_name; -- cannot be parsed 
END; 
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Dynamic SQL 

You use dynamic SQL to create a SQL statement whose text 
is not completely known in advance. Dynamic SQL: 
• Is constructed and stored as a character string within a 

subprogram. 
• Is a SQL statement with varying column data, or different 

conditions with or without placeholders (bind variables). 
• Enables data-definition, data-control, or session-control 

statements to be written and executed from PL/SQL. 

8 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L1 
Using Dynamic SQL 

Native Dynamic SQL 

• PL/SQL does not support DDL statements written directly 
in a program.  

• Native Dynamic SQL (NDS) allows you to work around this 
by constructing and storing SQL as a character string 
within a subprogram.  

• NDS:  
– Provides native support for Dynamic SQL directly in the 

PL/SQL language. 
– Enables data-definition, data-control, or session-control 

statements to be written and executed from PL/SQL. 
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Native Dynamic SQL 

NDS:  
– Is executed with Native Dynamic SQL statements (EXECUTE 
IMMEDIATE) or the DBMS_SQL package. 

– Provides the ability to execute SQL statements whose 
structure is unknown until execution time. 

– Can also use the OPEN-FOR, FETCH, and CLOSE PL/SQL 
statements. 
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Using the EXECUTE IMMEDIATE 
Statement 

• Use the EXECUTE IMMEDIATE statement for NDS in 
PL/SQL anonymous blocks or subprograms: 
 
 

 
• INTO is used for single-row queries and specifies the 

variables or records into which column values are retrieved. 
• USING holds all bind arguments.  
• The default parameter mode is IN, if not specified. 

EXECUTE IMMEDIATE dynamic_string 
 [INTO {define_variable 
     [, define_variable] ... | record}] 
 [USING [IN|OUT|IN OUT] bind_argument 
     [, [IN|OUT|IN OUT] bind_argument] ... ]; 
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Using the EXECUTE IMMEDIATE 
Statement 

 
 

 
 

• dynamic_string is a character variable or literal 
containing the text of a SQL statement. 

• define_variable is a PL/SQL variable that stores a 
selected column value. 

• record is a user-defined or %ROWTYPE record that 
stores a selected row. 

EXECUTE IMMEDIATE dynamic_string 
 [INTO {define_variable 
     [, define_variable] ... | record}] 
 [USING [IN|OUT|IN OUT] bind_argument 
     [, [IN|OUT|IN OUT] bind_argument] ... ]; 
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Using the EXECUTE IMMEDIATE 
Statement 

 

 
 
 

• bind_argument is an expression whose value is passed 
to the dynamic SQL statement at execution time. 

• USING clause holds all bind arguments.  
• The default parameter mode is IN. 

EXECUTE IMMEDIATE dynamic_string 
 [INTO {define_variable 
     [, define_variable] ... | record}] 
 [USING [IN|OUT|IN OUT] bind_argument 
     [, [IN|OUT|IN OUT] bind_argument] ... ]; 
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• Constructing the dynamic statement in-line: 
 
 

 

• Constructing the dynamic statement in a variable: 

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS 
BEGIN 
  EXECUTE IMMEDIATE 'DROP TABLE ' || p_table_name; 
END; 

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS 
  v_dynamic_stmt  VARCHAR2(50); 
BEGIN 
  v_dynamic_stmt := 'DROP TABLE ' || p_table_name; 
  EXECUTE IMMEDIATE v_dynamic_stmt; 
END; 

BEGIN  drop_any_table('EMPLOYEE_NAMES');   END; 

Example 1: Dynamic SQL with a DDL 
Statement 
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• Deleting all the rows from any table and returning a 
count: 

 
 
 
 

• Invoking the function: 

CREATE FUNCTION del_rows(p_table_name VARCHAR2) 
RETURN NUMBER IS 
BEGIN 
  EXECUTE IMMEDIATE 'DELETE FROM ' || p_table_name; 
  RETURN SQL%ROWCOUNT; 
END; 

DECLARE 
  v_count  NUMBER; 
BEGIN 
  v_count := del_rows('EMPLOYEE_NAMES'); 
  DBMS_OUTPUT.PUT_LINE(v_count || ' rows deleted.'); 
END; 

Example 2: Dynamic SQL with a DML 
Statement 
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Example 3: Dynamic SQL with a DML 
Statement 

• Here is an example of inserting a row into a table with two 
columns and invoking the procedure.  

• Note the use of escape single quotes. 
CREATE PROCEDURE add_row(p_table_name VARCHAR2, 
   p_id NUMBER, p_name VARCHAR2) IS 
BEGIN 
  EXECUTE IMMEDIATE 'INSERT INTO ' || p_table_name || 
        'VALUES(' || p_id || ', ''' || p_name || ''')'; 
END; 

BEGIN 
  add_row('EMPLOYEE_NAMES', 250, 'Chang'); 
END; 
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Example 4: Using Native Dynamic SQL 
to Recompile PL/SQL Code 

You can recompile PL/SQL objects without recreating them 
by using the following ALTER statements: 

 

 
 
 

 

 

ALTER PROCEDURE procedure-name COMPILE; 

ALTER FUNCTION  function-name  COMPILE; 

ALTER PACKAGE   package_name   COMPILE SPECIFICATION; 

ALTER PACKAGE   package-name   COMPILE BODY; 
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• This example creates a procedure that recompiles a 
PL/SQL object whose name and type is entered at run 
time.  

CREATE PROCEDURE compile_plsql 
 (p_name VARCHAR2,p_type VARCHAR2,p_options VARCHAR2 := NULL) IS 
  v_stmt VARCHAR2(200); 
BEGIN 
  v_stmt := 'ALTER ' || p_type || ' ' || p_name || ' COMPILE' 
            || ' ' || p_options; 
  EXECUTE IMMEDIATE v_stmt; 
END; 

BEGIN   compile_plsql('MYPACK','PACKAGE','BODY');  END; 
 

Example 4: Using Native Dynamic SQL 
to Recompile PL/SQL Code 
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Using the DBMS_SQL Package 

Some of the procedures and functions of the DBMS_SQL 
package are: 
• OPEN_CURSOR 
• PARSE 
• BIND_VARIABLE 
• EXECUTE 
• FETCH_ROWS 
• CLOSE_CURSOR 

 

 
19 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L1 
Using Dynamic SQL 

Using DBMS_SQL with a DML Statement 

• Example of deleting rows: 
 
 
 
 
 

 

• Compare this with the del_rows function earlier in this 
lesson.  

• They are functionally identical, but which is simpler? 

CREATE OR REPLACE FUNCTION del_rows 
 (p_table_name VARCHAR2) RETURN NUMBER IS 
  v_csr_id      INTEGER; 
  v_rows_del    NUMBER; 
BEGIN 
  v_csr_id := DBMS_SQL.OPEN_CURSOR; 
  DBMS_SQL.PARSE(v_csr_id, 
    'DELETE FROM ' || p_table_name, DBMS_SQL.NATIVE); 
  v_rows_del := DBMS_SQL.EXECUTE(v_csr_id); 
  DBMS_SQL.CLOSE_CURSOR(v_csr_id); 
  RETURN v_rows_del; 
END; 
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Using DBMS_SQL with a 
Parameterized DML Statement 

• Again, compare this with the add_row procedure earlier 
in this lesson.  

• Which would you rather write? 

 CREATE PROCEDURE add_row (p_table_name VARCHAR2,   p_id NUMBER, p_name VARCHAR2) IS 
  v_csr_id     INTEGER; 
  v_stmt       VARCHAR2(200); 
  v_rows_added NUMBER; 
BEGIN 
  v_stmt := 'INSERT INTO ' || p_table_name || 
          ' VALUES(' || p_id || ', ''' || p_name || ''')'; 
  v_csr_id := DBMS_SQL.OPEN_CURSOR; 
  DBMS_SQL.PARSE(v_csr_id, v_stmt, DBMS_SQL.NATIVE); 
  v_rows_added := DBMS_SQL.EXECUTE(v_csr_id); 
  DBMS_SQL.CLOSE_CURSOR(v_csr_id); 
END; 
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Comparison of Native Dynamic SQL 
and the DBMS_SQL Package 

Native Dynamic SQL: 
• Is easier to use than DBMS_SQL 
• Requires less code than DBMS_SQL 

• Often executes faster than DBMS_SQL because there are 
fewer statements to execute. 

 

22 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S12L1 
Using Dynamic SQL 

Terminology 

Key terms used in this lesson included: 
• Native Dynamic SQL 
• EXECUTE IMMEDIATE 
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Summary 

In this lesson, you should have learned how to: 
• Recall the stages through which all SQL statements pass 

• Describe the reasons for using dynamic SQL to create a SQL 
statement 

• List four PL/SQL statements supporting Native Dynamic SQL 
• Describe the benefits of EXECUTE IMMEDIATE over 
DBMS_SQL for Dynamic SQL 
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