

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
12-1
Using Dynamic SQL

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Objectives

This lesson covers the following objectives:
• Recall the stages through which all SQL statements pass

• Describe the reasons for using dynamic SQL to create a SQL
statement

• List four PL/SQL statements supporting Native Dynamic SQL
• Describe the benefits of EXECUTE IMMEDIATE over
DBMS_SQL for Dynamic SQL

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Purpose

• In this lesson, you learn to construct and execute SQL
statements dynamically—in other words, at run time
using the Native Dynamic SQL statements in PL/SQL.

• Dynamically executing SQL and PL/SQL code extends the
capabilities of PL/SQL beyond query and transactional
operations.

• The lesson also compares Native Dynamic SQL to the
DBMS_SQL package, which provides similar capabilities.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Execution Flow of SQL

• All SQL statements in the database go through various
stages:
– Parse: Pre-execution “is this possible?” checks syntax, object

existence, privileges, and so on
– Bind: Getting the actual values of any variables referenced in

the statement
– Execute: The statement is executed.
– Fetch: Results are returned to the user.

• Some stages might not be relevant for all statements; for
example, the fetch phase is applicable to queries but not
DML.

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Execution Flow of SQL in PL/SQL
Subprograms

• When a SQL statement is included in a PL/SQL subprogram,
the parse and bind phases are normally done at compile
time, that is, when the procedure, function, or package
body is CREATEd.

• What if the text of the SQL statement is not
known when the procedure is created?

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Execution Flow of SQL in PL/SQL
Subprograms

• How could the Oracle server parse it?
• It couldn’t.
• For example, suppose you want to DROP a table, but the

user enters the table name at execution time:
CREATE PROCEDURE drop_any_table(p_table_name
VARCHAR2)
IS BEGIN
 DROP TABLE p_table_name; -- cannot be parsed
END;

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Dynamic SQL

You use dynamic SQL to create a SQL statement whose text
is not completely known in advance. Dynamic SQL:
• Is constructed and stored as a character string within a

subprogram.
• Is a SQL statement with varying column data, or different

conditions with or without placeholders (bind variables).
• Enables data-definition, data-control, or session-control

statements to be written and executed from PL/SQL.

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Native Dynamic SQL

• PL/SQL does not support DDL statements written directly
in a program.

• Native Dynamic SQL (NDS) allows you to work around this
by constructing and storing SQL as a character string
within a subprogram.

• NDS:
– Provides native support for Dynamic SQL directly in the

PL/SQL language.
– Enables data-definition, data-control, or session-control

statements to be written and executed from PL/SQL.

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Native Dynamic SQL

NDS:
– Is executed with Native Dynamic SQL statements (EXECUTE
IMMEDIATE) or the DBMS_SQL package.

– Provides the ability to execute SQL statements whose
structure is unknown until execution time.

– Can also use the OPEN-FOR, FETCH, and CLOSE PL/SQL
statements.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using the EXECUTE IMMEDIATE
Statement

• Use the EXECUTE IMMEDIATE statement for NDS in
PL/SQL anonymous blocks or subprograms:

• INTO is used for single-row queries and specifies the

variables or records into which column values are retrieved.
• USING holds all bind arguments.
• The default parameter mode is IN, if not specified.

EXECUTE IMMEDIATE dynamic_string
 [INTO {define_variable
 [, define_variable] ... | record}]
 [USING [IN|OUT|IN OUT] bind_argument
 [, [IN|OUT|IN OUT] bind_argument] ...];

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using the EXECUTE IMMEDIATE
Statement

• dynamic_string is a character variable or literal
containing the text of a SQL statement.

• define_variable is a PL/SQL variable that stores a
selected column value.

• record is a user-defined or %ROWTYPE record that
stores a selected row.

EXECUTE IMMEDIATE dynamic_string
 [INTO {define_variable
 [, define_variable] ... | record}]
 [USING [IN|OUT|IN OUT] bind_argument
 [, [IN|OUT|IN OUT] bind_argument] ...];

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using the EXECUTE IMMEDIATE
Statement

• bind_argument is an expression whose value is passed
to the dynamic SQL statement at execution time.

• USING clause holds all bind arguments.
• The default parameter mode is IN.

EXECUTE IMMEDIATE dynamic_string
 [INTO {define_variable
 [, define_variable] ... | record}]
 [USING [IN|OUT|IN OUT] bind_argument
 [, [IN|OUT|IN OUT] bind_argument] ...];

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

• Constructing the dynamic statement in-line:

• Constructing the dynamic statement in a variable:

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
BEGIN
 EXECUTE IMMEDIATE 'DROP TABLE ' || p_table_name;
END;

CREATE PROCEDURE drop_any_table(p_table_name VARCHAR2) IS
 v_dynamic_stmt VARCHAR2(50);
BEGIN
 v_dynamic_stmt := 'DROP TABLE ' || p_table_name;
 EXECUTE IMMEDIATE v_dynamic_stmt;
END;

BEGIN drop_any_table('EMPLOYEE_NAMES'); END;

Example 1: Dynamic SQL with a DDL
Statement

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

• Deleting all the rows from any table and returning a
count:

• Invoking the function:

CREATE FUNCTION del_rows(p_table_name VARCHAR2)
RETURN NUMBER IS
BEGIN
 EXECUTE IMMEDIATE 'DELETE FROM ' || p_table_name;
 RETURN SQL%ROWCOUNT;
END;

DECLARE
 v_count NUMBER;
BEGIN
 v_count := del_rows('EMPLOYEE_NAMES');
 DBMS_OUTPUT.PUT_LINE(v_count || ' rows deleted.');
END;

Example 2: Dynamic SQL with a DML
Statement

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Example 3: Dynamic SQL with a DML
Statement

• Here is an example of inserting a row into a table with two
columns and invoking the procedure.

• Note the use of escape single quotes.
CREATE PROCEDURE add_row(p_table_name VARCHAR2,
 p_id NUMBER, p_name VARCHAR2) IS
BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO ' || p_table_name ||
 'VALUES(' || p_id || ', ''' || p_name || ''')';
END;

BEGIN
 add_row('EMPLOYEE_NAMES', 250, 'Chang');
END;

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Example 4: Using Native Dynamic SQL
to Recompile PL/SQL Code

You can recompile PL/SQL objects without recreating them
by using the following ALTER statements:

ALTER PROCEDURE procedure-name COMPILE;

ALTER FUNCTION function-name COMPILE;

ALTER PACKAGE package_name COMPILE SPECIFICATION;

ALTER PACKAGE package-name COMPILE BODY;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

• This example creates a procedure that recompiles a
PL/SQL object whose name and type is entered at run
time.

CREATE PROCEDURE compile_plsql
 (p_name VARCHAR2,p_type VARCHAR2,p_options VARCHAR2 := NULL) IS
 v_stmt VARCHAR2(200);
BEGIN
 v_stmt := 'ALTER ' || p_type || ' ' || p_name || ' COMPILE'
 || ' ' || p_options;
 EXECUTE IMMEDIATE v_stmt;
END;

BEGIN compile_plsql('MYPACK','PACKAGE','BODY'); END;

Example 4: Using Native Dynamic SQL
to Recompile PL/SQL Code

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using the DBMS_SQL Package

Some of the procedures and functions of the DBMS_SQL
package are:
• OPEN_CURSOR
• PARSE
• BIND_VARIABLE
• EXECUTE
• FETCH_ROWS
• CLOSE_CURSOR

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using DBMS_SQL with a DML Statement

• Example of deleting rows:

• Compare this with the del_rows function earlier in this
lesson.

• They are functionally identical, but which is simpler?

CREATE OR REPLACE FUNCTION del_rows
 (p_table_name VARCHAR2) RETURN NUMBER IS
 v_csr_id INTEGER;
 v_rows_del NUMBER;
BEGIN
 v_csr_id := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(v_csr_id,
 'DELETE FROM ' || p_table_name, DBMS_SQL.NATIVE);
 v_rows_del := DBMS_SQL.EXECUTE(v_csr_id);
 DBMS_SQL.CLOSE_CURSOR(v_csr_id);
 RETURN v_rows_del;
END;

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Using DBMS_SQL with a
Parameterized DML Statement

• Again, compare this with the add_row procedure earlier
in this lesson.

• Which would you rather write?

 CREATE PROCEDURE add_row (p_table_name VARCHAR2, p_id NUMBER, p_name VARCHAR2) IS
 v_csr_id INTEGER;
 v_stmt VARCHAR2(200);
 v_rows_added NUMBER;
BEGIN
 v_stmt := 'INSERT INTO ' || p_table_name ||
 ' VALUES(' || p_id || ', ''' || p_name || ''')';
 v_csr_id := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(v_csr_id, v_stmt, DBMS_SQL.NATIVE);
 v_rows_added := DBMS_SQL.EXECUTE(v_csr_id);
 DBMS_SQL.CLOSE_CURSOR(v_csr_id);
END;

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Comparison of Native Dynamic SQL
and the DBMS_SQL Package

Native Dynamic SQL:
• Is easier to use than DBMS_SQL
• Requires less code than DBMS_SQL

• Often executes faster than DBMS_SQL because there are
fewer statements to execute.

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Terminology

Key terms used in this lesson included:
• Native Dynamic SQL
• EXECUTE IMMEDIATE

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S12L1
Using Dynamic SQL

Summary

In this lesson, you should have learned how to:
• Recall the stages through which all SQL statements pass

• Describe the reasons for using dynamic SQL to create a SQL
statement

• List four PL/SQL statements supporting Native Dynamic SQL
• Describe the benefits of EXECUTE IMMEDIATE over
DBMS_SQL for Dynamic SQL

24

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Execution Flow of SQL
	Execution Flow of SQL in PL/SQL Subprograms
	Execution Flow of SQL in PL/SQL Subprograms
	Dynamic SQL
	Native Dynamic SQL
	Native Dynamic SQL
	Using the EXECUTE IMMEDIATE Statement
	Using the EXECUTE IMMEDIATE Statement
	Using the EXECUTE IMMEDIATE Statement
	Slide Number 14
	Slide Number 15
	Example 3: Dynamic SQL with a DML Statement
	Example 4: Using Native Dynamic SQL to Recompile PL/SQL Code
	Example 4: Using Native Dynamic SQL to Recompile PL/SQL Code
	Using the DBMS_SQL Package
	Using DBMS_SQL with a DML Statement
	Using DBMS_SQL with a Parameterized DML Statement
	Comparison of Native Dynamic SQL and the DBMS_SQL Package
	Terminology
	Summary
	Slide Number 25

