

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
8-1
Creating Procedures

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Objectives

This lesson covers the following objectives:
• Differentiate between anonymous blocks and subprograms

• Identify the benefits of subprograms
• Define a stored procedure

• Create a procedure

• Describe how a stored procedure is invoked
• List the development steps for creating a procedure
• Create a nested subprogram in the declarative section of a

procedure

 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Purpose

• There are times that you want to give a set of steps a
name.

• For example, if you’re told to take notes, you know that
this means you need to get out a piece of paper and a
pencil and prepare to write.

• So far you have learned to write and execute anonymous
PL/SQL blocks (blocks that do not have a name associated
with them).

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Purpose

• Next you will learn how to create, execute, and manage
two types of PL/SQL subprograms that are named and
stored in the database, resulting in several benefits such
as shareability, better security, and faster performance.

• Two types of subprograms:
– Functions

– Procedures

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

• As the word “anonymous” indicates, anonymous blocks
are unnamed executable PL/SQL blocks.

• Because they are unnamed, they can neither be reused
nor stored in the database for later use.

• While you can store anonymous blocks on your PC, the
database is not aware of them, so no one else can share
them.

• Procedures and functions are PL/SQL blocks that are
named, and they are also known as subprograms.

Differences Between Anonymous Blocks
and Subprograms

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

• These subprograms are compiled and stored in the
database.

• The block structure of the subprograms is similar to the
structure of anonymous blocks.

• While subprograms can be explicitly shared, the default is
to make them private to the owner’s schema.

• Later subprograms become the building blocks of
packages and triggers.

Differences Between Anonymous Blocks
and Subprograms

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

• Anonymous blocks

• Subprograms (procedures)

Differences Between Anonymous Blocks
and Subprograms

DECLARE (Optional)
 Variables, cursors, etc.;
BEGIN (Mandatory)
 SQL and PL/SQL statements;
EXCEPTION (Optional)
 WHEN exception-handling actions;
END; (Mandatory)

CREATE [OR REPLACE] PROCEDURE name [parameters] IS|AS (Mandatory)
 Variables, cursors, etc.; (Optional)
BEGIN (Mandatory)
 SQL and PL/SQL statements;
EXCEPTION (Optional)
 WHEN exception-handling actions;
END [name]; (Mandatory)

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Differences Between Anonymous Blocks
and Subprograms

Anonymous Blocks Subprograms
Unnamed PL/SQL blocks Named PL/SQL blocks

Compiled on every
execution Compiled only once, when created

Not stored in the database Stored in the database

Cannot be invoked by other
applications

They are named and therefore can
be invoked by other applications

Do not return values Subprograms called functions must
return values

Cannot take parameters Can take parameters

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Benefits of Subprograms

• Procedures and functions have many benefits due to the
modularizing of the code:
– Easy maintenance: Modifications need only be done once to

improve multiple applications and minimize testing.

– Code reuse: Subprograms are located in one place.

• When compiled and validated, they can be used and
reused in any number of applications.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Benefits of Subprograms

• Improved data security: Indirect access to database
objects is permitted by the granting of security privileges
on the subprograms.

• By default, subprograms run with the privileges of the
subprogram owner, not the privileges of the user.

• Data integrity: Related actions can be grouped into a block
and are performed together (“Statement Processed”) or
not at all.

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Benefits of Subprograms

• Improved performance: You can reuse compiled PL/SQL
code that is stored in the shared SQL area cache of the
server.

• Subsequent calls to the subprogram avoid compiling the
code again.

• Also, many users can share a single copy of the
subprogram code in memory.

• Improved code clarity: By using appropriate names and
conventions to describe the action of the routines, you can
reduce the need for comments, and enhance the clarity of
the code.

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Procedures and Functions

Procedures and functions:
• Are named PL/SQL blocks

• Are called PL/SQL subprograms
• Have block structures similar to anonymous blocks:

– Optional parameters
– Optional declarative section (but the DECLARE

keyword changes to IS or AS)
– Mandatory executable section
– Optional section to handle exceptions

• This section focuses on procedures.

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

What Is a Procedure?

• A procedure is a named PL/SQL block that can accept
parameters.

• Generally, you use a procedure to perform an action
(sometimes called a “side-effect”).

• A procedure is compiled and stored in the database as a
schema object.
– Shows up in USER_OBJECTS as an object type of
PROCEDURE

– More details in USER_PROCEDURES
– Detailed PL/SQL code in USER_SOURCE

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Syntax for Creating Procedures

• Parameters are optional
• Mode defaults to IN

• Datatype can be either explicit (for example, VARCHAR2)
or implicit with %TYPE

• Body is the same as an anonymous block
CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter1 [mode1] datatype1,
 parameter2 [mode2] datatype2,
 . . .)]
IS|AS
procedure_body;

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Syntax for Creating Procedures

• Use CREATE PROCEDURE followed by the name,
optional parameters, and keyword IS or AS.

• Add the OR REPLACE option to overwrite an existing
procedure.

• Write a PL/SQL block containing local variables,
a BEGIN, and an END (or END procedure_name).
CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter1 [mode] datatype1,
 parameter2 [mode] datatype2, ...)]
IS|AS
 [local_variable_declarations; …]
BEGIN
 -- actions;
END [procedure_name];

PL/SQL Block

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Procedure: Example

• In the following example, the add_dept procedure
inserts a new department with the department_id
280 and department_name ST-Curriculum.

• The procedure declares two variables, v_dept_id and
v_dept_name, in the declarative section.
CREATE OR REPLACE PROCEDURE add_dept IS
 v_dept_id dept.department_id%TYPE;
 v_dept_name dept.department_name%TYPE;
BEGIN
 v_dept_id := 280;
 v_dept_name := 'ST-Curriculum';
 INSERT INTO dept(department_id, department_name)
 VALUES(v_dept_id, v_dept_name);
 DBMS_OUTPUT.PUT_LINE('Inserted '|| SQL%ROWCOUNT || ' row.');
END;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Procedure: Example

• The declarative section of a procedure starts immediately
after the procedure declaration and does not begin with the
keyword DECLARE.

• This procedure uses the SQL%ROWCOUNT cursor attribute
to check if the row was successfully inserted.
SQL%ROWCOUNT should return 1 in this case.
CREATE OR REPLACE PROCEDURE add_dept IS
 v_dept_id dept.department_id%TYPE;
 v_dept_name dept.department_name%TYPE;
BEGIN
 v_dept_id := 280;
 v_dept_name := 'ST-Curriculum';
 INSERT INTO dept(department_id, department_name)
 VALUES(v_dept_id, v_dept_name);
 DBMS_OUTPUT.PUT_LINE('Inserted '|| SQL%ROWCOUNT || ' row.');
END;

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Invoking Procedures

• You can invoke (execute) a procedure from:
– An anonymous block
– Another procedure
– A calling application

• Note: You cannot invoke a procedure from inside a SQL
statement such as SELECT.

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Invoking the Procedure from Application
Express

• To invoke (execute) a procedure in Oracle Application
Express, write and run a small anonymous block that
invokes the procedure.

• For example:

• The select statement at the end confirms that the row was

successfully inserted.

BEGIN
 add_dept;
END;

SELECT department_id, department_name FROM dept WHERE department_id=280;

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Correcting Errors in CREATE
PROCEDURE Statements

• If compilation errors exist, Application Express displays
them in the output portion of the SQL Commands window.

• You must edit the source code to make corrections.

• The procedure is still created even though it contains
errors.

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Correcting Errors in CREATE
PROCEDURE Statements

• After you have corrected the error in the code, you need
to recreate the procedure.

• There are two ways to do this:
– Use a CREATE OR REPLACE PROCEDURE statement to

overwrite the existing code (most common).
– DROP the procedure first and then execute the
CREATE PROCEDURE statement (less common).

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Saving Your Work

Once a procedure has been created successfully, you should
save its definition in case you need to modify the code later.

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Saving Your Work

In the Application Express SQL Commands window, click the
SAVE button, then enter a name and optional description for
your code.

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Saving Your Work

You can view and reload your code later by clicking on the
Saved SQL button in the SQL Commands window.

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Local Subprograms

When one procedure invokes another procedure, we would
normally create them separately, but we can create them
together as a single procedure if we like.
 CREATE OR REPLACE PROCEDURE subproc
 ...
END subproc;

CREATE OR REPLACE PROCEDURE mainproc
 ...
IS BEGIN
 ...
 subproc(...);
 ...
END mainproc;

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Local Subprograms

• All the code is now in one place, and is easier to read and
maintain.

• The nested subprogram's scope is limited to the procedure
within which it is defined; SUBPROC can be invoked from
MAINPROC, but from nowhere else.
CREATE OR REPLACE PROCEDURE mainproc
 ...
IS
 PROCEDURE subproc (...) IS BEGIN
 ...
 END subproc;
BEGIN
 ...
 subproc(...);
 ...
END mainproc;

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Local Subprograms

• Every time an employee is deleted, we need to insert a row
into a logging table.

• The nested procedure LOG_EMP is called a Local Subprogram.
CREATE OR REPLACE PROCEDURE delete_emp
 (p_emp_id IN employees.employee_id%TYPE)
IS
 PROCEDURE log_emp (p_emp IN employees.employee_id%TYPE)
 IS BEGIN
 INSERT INTO logging_table VALUES(p_emp, ...);
 END log_emp;
BEGIN
 DELETE FROM employees
 WHERE employee_id = p_emp_id;
 log_emp(p_emp_id);
END delete_emp;

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Alternative Tools for Developing
Procedures

• If you end up writing PL/SQL procedures for a living, there
are other free tools that can make this process easier.

• For instance, Oracle tools, such as SQL Developer and
JDeveloper assist you by:
– Color-coding commands vs variables vs constants

– Highlighting matched and mismatched (parentheses)

– Displaying errors more graphically

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Alternative Tools for Developing
Procedures

• Enhancing code with standard indentations and
capitalization

• Completing commands when typing

• Completing column names from tables

30

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Terminology

Key terms used in this lesson included:
• Anonymous blocks
• IS or AS

• Procedures

• Subprograms

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S8L1
Creating Procedures

Summary

In this lesson, you should have learned how to:
• Differentiate between anonymous blocks and subprograms

• Identify the benefits of subprograms
• Define a stored procedure

• Create a procedure

• Describe how a stored procedure is invoked
• List the development steps for creating a procedure

• Create a nested subprogram in the declarative section of a
procedure

32

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Purpose
	Differences Between Anonymous Blocks and Subprograms
	Differences Between Anonymous Blocks and Subprograms
	Differences Between Anonymous Blocks and Subprograms
	Differences Between Anonymous Blocks and Subprograms
	Benefits of Subprograms
	Benefits of Subprograms
	Benefits of Subprograms
	Procedures and Functions
	What Is a Procedure?
	Syntax for Creating Procedures
	Syntax for Creating Procedures
	Procedure: Example
	Procedure: Example
	Invoking Procedures
	Invoking the Procedure from Application Express
	Correcting Errors in CREATE PROCEDURE Statements
	Correcting Errors in CREATE PROCEDURE Statements
	Saving Your Work
	Saving Your Work
	Saving Your Work
	Local Subprograms
	Local Subprograms
	Local Subprograms
	Alternative Tools for Developing Procedures
	Alternative Tools for Developing Procedures
	Terminology
	Summary
	Slide Number 33

