

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
4-4
Iterative Control: WHILE and FOR Loops

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

Objectives

This lesson covers the following objectives:
• Construct and use the WHILE looping construct in PL/SQL
• Construct and use the FOR looping construct in PL/SQL

• Describe when a WHILE loop is used in PL/SQL
• Describe when a FOR loop is used in PL/SQL

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

Purpose

• The previous lesson discussed the basic loop, which allows
the statements inside the loop to execute at least once.

• This lesson introduces the WHILE loop and FOR loop.

• The WHILE loop is a looping construct which requires the
controlling condition be evaluated at the start of each
iteration.

• The FOR loop should be used if the number of iterations is
known.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE Loops

• You can use the WHILE loop to repeat a sequence of
statements until the controlling condition is no longer
TRUE.

• The condition is evaluated at the start of each iteration.
• The loop terminates when the condition is FALSE or
NULL.

• If the condition is FALSE or NULL at the initial execution
of the loop, then no iterations are performed.
WHILE condition LOOP
 statement1;
 statement2;
 . . .
END LOOP;

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE Loops

• In the syntax:

• Condition is a Boolean variable or expression (TRUE,

FALSE, or NULL)

• Statement can be one or more PL/SQL or SQL statements

6

WHILE condition LOOP
 statement1;
 statement2;
 . . .
END LOOP;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE

• In the syntax:

• If the variables involved in the conditions do not change

during the body of the loop, then the condition remains
TRUE and the loop does not terminate.

• Note: If the condition yields NULL, then the loop is
bypassed and control passes to the statement that follows
the loop.

7

WHILE condition LOOP
 statement1;
 statement2;
 . . .
END LOOP;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE Loops

• In this example, three new location IDs for Montreal,
Canada, are inserted in the LOCATIONS table.

• The counter is explicitly declared in this example.
 DECLARE
 v_loc_id locations.location_id%TYPE;
 v_counter NUMBER := 1;
BEGIN
 SELECT MAX(location_id) INTO v_loc_id FROM locations
 WHERE country_id = 'CA';
 WHILE v_counter <= 3 LOOP
 INSERT INTO locations(location_id, city, country_id)
 VALUES((v_loc_id + v_counter), 'Montreal', 'CA');
 v_counter := v_counter + 1;
 END LOOP;
END;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE Loops

• With each iteration through the WHILE loop, a counter
(v_counter) is incremented.

• If the number of iterations is less than or equal to the
number 3, then the code within the loop is executed and a
row is inserted into the locations table.
DECLARE
 v_loc_id locations.location_id%TYPE;
 v_counter NUMBER := 1;
BEGIN
 SELECT MAX(location_id) INTO v_loc_id FROM locations
 WHERE country_id = 'CA';
 WHILE v_counter <= 3 LOOP
 INSERT INTO locations(location_id, city, country_id)
 VALUES((v_loc_id + v_counter), 'Montreal', 'CA');
 v_counter := v_counter + 1;
 END LOOP;
END;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

WHILE Loops

After the counter exceeds the number of new locations for
this city and country, the condition that controls the loop
evaluates to FALSE and the loop is terminated.
DECLARE
 v_loc_id locations.location_id%TYPE;
 v_counter NUMBER := 1;
BEGIN
 SELECT MAX(location_id) INTO v_loc_id FROM locations
 WHERE country_id = 'CA';
 WHILE v_counter <= 3 LOOP
 INSERT INTO locations(location_id, city, country_id)
 VALUES((v_loc_id + v_counter), 'Montreal', 'CA');
 v_counter := v_counter + 1;
 END LOOP;
END;

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loops Described

• FOR loops have the same general structure as the basic
loop.

• In addition, they have a control statement before the
LOOP keyword to set the number of iterations that PL/SQL
performs.

FOR counter IN [REVERSE]
 lower_bound..upper_bound LOOP
 statement1;
 statement2;
 . . .
END LOOP;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loop Rules

FOR loop rules:
• Use a FOR loop to shortcut the test for the number of

iterations.
• Do not declare the counter; it is declared implicitly.
• lower_bound .. upper_bound is the required

syntax.

FOR counter IN [REVERSE]
 lower_bound..upper_bound LOOP
 statement1;
 statement2;
 . . .
END LOOP;

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loops Syntax

• Counter is an implicitly declared integer whose value
automatically increases or decreases (decreases if the
REVERSE keyword is used) by 1 on each iteration of the
loop until the upper or lower bound is reached.

• REVERSE causes the counter to decrement with each
iteration from the upper bound to the lower bound.

• (Note that the lower bound is referenced first.)
FOR counter IN [REVERSE]
 lower_bound..upper_bound LOOP
 statement1;
 statement2;
 . . .
END LOOP;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loops Syntax

• lower_bound specifies the lower bound for the range of
counter values.

• upper_bound specifies the upper bound for the range
of counter values.

FOR counter IN [REVERSE]
 lower_bound..upper_bound LOOP
 statement1;
 statement2;
 . . .
END LOOP;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loop Example

• You have already learned how to insert three new
locations for the country code CA and the city Montreal by
using the simple LOOP and the WHILE loop.

• This slide shows you how to achieve the same by using the
FOR loop.
DECLARE
 v_loc_id locations.location_id%TYPE;
BEGIN
 SELECT MAX(location_id) INTO v_loc_id FROM locations
 WHERE country_id = 'CA';
 FOR i IN 1..3 LOOP
 INSERT INTO locations(location_id, city, country_id)
 VALUES((v_loc_id + i), 'Montreal', 'CA');
 END LOOP;
END;

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loop Guidelines

FOR loops are a common structure of programming
languages.
• A FOR loop is used within the code when the beginning

and ending value of the loop is known.
• Reference the counter only within the loop; its scope does

not extend outside the loop.
• Do not reference the counter as the target of an

assignment.
• Neither loop bound (lower or upper) should be NULL.

 16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

FOR Loop Expression Example

• While writing a FOR loop, the lower and upper bounds of
a LOOP statement do not need to be numeric literals.

• They can be expressions that convert to numeric values.

DECLARE
 v_lower NUMBER := 1;
 v_upper NUMBER := 100;
BEGIN
 FOR i IN v_lower..v_upper LOOP
 ...
 END LOOP;
END;

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

Guidelines For When to Use Loops

• Use the basic loop when the statements inside the loop
must execute at least once.

• Use the WHILE loop if the condition has to be evaluated
at the start of each iteration.

• Use a FOR loop if the number of iterations is known.

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

Terminology

Key terms used in this lesson included:
• FOR loops

• Lower Bound
• REVERSE

• Upper Bound
• WHILE loops

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S4L4
Iterative Control: WHILE and FOR Loops

Summary

In this lesson, you should have learned how to:
• Construct and use the WHILE looping construct in PL/SQL

• Construct and use the FOR looping construct in PL/SQL
• Describe when a WHILE loop is used in PL/SQL

• Describe when a FOR loop is used in PL/SQL

20

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	WHILE Loops
	WHILE Loops
	WHILE
	WHILE Loops
	WHILE Loops
	WHILE Loops
	FOR Loops Described
	FOR Loop Rules
	FOR Loops Syntax
	FOR Loops Syntax
	FOR Loop Example
	FOR Loop Guidelines
	FOR Loop Expression Example
	Guidelines For When to Use Loops
	Terminology
	Summary
	Slide Number 21

