


Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 

Database Programming with 
PL/SQL 
4-5 
Iterative Control: Nested Loops 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Objectives 

This lesson covers the following objectives: 
• Construct and execute PL/SQL using nested loops 

• Label loops and use the labels in EXIT statements  
• Evaluate a nested loop construct and identify the exit point 

 

 
 
 

3 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Purpose  

• You’ve learned about looping constructs in PL/SQL.  
• This lesson discusses how you can nest loops to multiple 

levels.  
• You can nest FOR, WHILE, and basic loops within one 

another. 

4 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Nested Loop Example 

• In PL/SQL, you can nest loops to multiple levels.  
• You can nest FOR, WHILE, and basic loops within one 

another.  
BEGIN 
  FOR v_outerloop IN 1..3 LOOP 
    FOR v_innerloop IN REVERSE 1..5 LOOP 
     DBMS_OUTPUT.PUT_LINE('Outer loop is: ' ||  
          v_outerloop || 
                          ' and inner loop is: ' ||  
          v_innerloop); 
    END LOOP; 
  END LOOP; 
END;     

5 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Nested Loops 

• This example contains EXIT conditions in nested basic 
loops.  

• What if you want to exit from the outer loop at step A? 
DECLARE 
  v_outer_done   CHAR(3) := 'NO'; 
  v_inner_done   CHAR(3) := 'NO'; 
BEGIN 
  LOOP             -- outer loop 
    ... 
    LOOP           -- inner loop 
      ... 
      ...          -- step A 
      EXIT WHEN v_inner_done = 'YES';    
      ...              
    END LOOP; 
    ... 
    EXIT WHEN v_outer_done = 'YES'; 
    ... 
  END LOOP; 
END;   

6 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Loop labels are required in this example in order to exit an 
outer loop from within an inner loop 

Loop Labels 

DECLARE 
  ... 
BEGIN 
 <<outer_loop>> 
  LOOP             -- outer loop 
    ... 
    <<inner_loop>> 
    LOOP           -- inner loop 
      EXIT outer_loop WHEN ...  -- exits both loops 
      EXIT WHEN v_inner_done = 'YES';    
      ...              
    END LOOP; 
    ... 
    EXIT WHEN v_outer_done = 'YES';           ... 
  END LOOP; 
END; 

7 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Loop Labels 

• Loop label names follow the same rules as other 
identifiers.  

• A label is placed before a statement, either on the same 
line or on a separate line.  

• In FOR or WHILE loops, place the label before FOR or 
WHILE within label delimiters (<<label>>).  

• If the loop is labeled, the label name can optionally be 
included after the END LOOP statement for clarity. 

 

 

8 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Loop Labels 

Label basic loops by placing the label before the word LOOP 
within label delimiters (<<label>>). 
 DECLARE   v_outerloop     PLS_INTEGER := 0; 
  v_innerloop     PLS_INTEGER := 5; 
BEGIN 
 <<outer_loop>>  
  LOOP 
    v_outerloop := v_outerloop + 1; 
    v_innerloop := 5; 
    EXIT WHEN v_outerloop > 3; 
    <<inner_loop>>  
    LOOP 
      DBMS_OUTPUT.PUT_LINE('Outer loop is: ' || v_outerloop || 
                           ' and inner loop is: ' || v_innerloop); 
      v_innerloop := v_innerloop - 1; 
      EXIT WHEN v_innerloop = 0; 
    END LOOP inner_loop; 
  END LOOP outer_loop; 
END;     

9 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Nested Loops and Labels 

• In this example, there are two loops.  
• The outer loop is identified by the label 
<<outer_loop>>, and the inner loop is identified by 
the label <<inner_loop>>.  
...BEGIN 
  <<outer_loop>>  
  LOOP 
    v_counter := v_counter + 1; 
  EXIT WHEN v_counter > 10; 
    <<inner_loop>>  
    LOOP              ... 
      EXIT Outer_loop WHEN v_total_done = 'YES'; 
      -- Leave both loops 
      EXIT WHEN v_inner_done = 'YES'; 
      -- Leave inner loop only             ... 
    END LOOP inner_loop;          ... 
  END LOOP outer_loop; 
END;     

10 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Terminology 

Key terms used in this lesson included: 
• Label Delimiters 

• Loop Label 
 

11 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S4L5 
Iterative Control: Nested Loops 

Summary 

In this lesson, you should have learned how to: 
• Construct and execute PL/SQL using nested loops 

• Label loops and use the labels in EXIT statements  
• Evaluate a nested loop construct and identify the exit point 

 

 
 
 

12 

 




	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose 
	Nested Loop Example
	Nested Loops
	Loop Labels
	Loop Labels
	Loop Labels
	Nested Loops and Labels
	Terminology
	Summary
	Slide Number 13

