

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
13-3
Creating DML Triggers: Part II

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Objectives

This lesson covers the following objectives:
• Create a DML trigger that uses conditional predicates

• Create a row-level trigger
• Create a row-level trigger that uses OLD and NEW qualifiers
• Create an INSTEAD OF trigger

• Create a Compound Trigger

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Purpose

• There might be times when you want a trigger to fire
under a specific condition.

• Or, you might want a trigger to impact just a row of data.
• These are examples of the DML trigger features covered in

this lesson.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using Conditional Predicates

In the previous lesson, you saw a trigger that prevents
INSERTs into the EMPLOYEES table during the weekend:

CREATE OR REPLACE TRIGGER secure_emp
 BEFORE INSERT ON employees
BEGIN
 IF TO_CHAR(SYSDATE, 'DY') IN ('SAT', 'SUN') THEN
 RAISE_APPLICATION_ERROR(-20500,
 'You may insert into EMPLOYEES'
 || ' table only during business hours');
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using Conditional Predicates

• Suppose you want to prevent any DML operation on
EMPLOYEES during the weekend, but with different error
messages for INSERT, UPDATE, and DELETE.

• You could create three separate triggers; however, the
next slide shows how to do this with a single trigger.

CREATE OR REPLACE TRIGGER secure_emp
 BEFORE INSERT ON employees
BEGIN
 IF TO_CHAR(SYSDATE, 'DY') IN ('SAT', 'SUN') THEN
 RAISE_APPLICATION_ERROR(-20500,
 'You may insert into EMPLOYEES'
 || ' table only during business hours');
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp
 BEFORE INSERT OR UPDATE OR DELETE ON employees
BEGIN
 IF TO_CHAR(SYSDATE, 'DY') IN ('SAT', 'SUN') THEN
 IF DELETING THEN RAISE_APPLICATION_ERROR
 (-20501,'You may delete from EMPLOYEES'
 || ' table only during business hours');
 ELSIF INSERTING THEN RAISE_APPLICATION_ERROR
 (-20502,'You may insert into EMPLOYEES'
 || ' table only during business hours');
 ELSIF UPDATING THEN RAISE_APPLICATION_ERROR
 (-20503,'You may update EMPLOYEES'
 || ' table only during business hours');
 END IF;
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using Conditional Predicates

You can use conditional predicates to test for UPDATE on a
specific column:

 CREATE OR REPLACE TRIGGER secure_emp
 BEFORE UPDATE ON employees
BEGIN
 IF UPDATING('SALARY') THEN
 IF TO_CHAR(SYSDATE, 'DY') IN ('SAT', 'SUN')
 THEN RAISE_APPLICATION_ERROR
 (-20501,'You may not update SALARY on the weekend');
 END IF;
 ELSIF UPDATING('JOB_ID') THEN
 IF TO_CHAR(SYSDATE, 'DY') = 'SUN'
 THEN RAISE_APPLICATION_ERROR
 (-20502, 'You may not update JOB_ID on Sunday');
 END IF;
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Understanding Row Triggers

• Remember that a statement trigger executes only once for
each triggering DML statement:

• This trigger inserts exactly one row into the log table,
regardless of whether the triggering statement updates
one employee, several employees, or no employees at all.

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees
BEGIN
 INSERT INTO log_emp_table (who, when)
 VALUES (USER, SYSDATE);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Understanding Row Triggers

• Suppose you want to insert one row into the log table for
each updated employee.

• For example, if five employees were updated, you want to
insert five rows into the log table so you have a record of
each row that was changed.

• For this, you need a row trigger.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Trigger Firing Sequence

• A row trigger fires (executes) once for each row affected
by the triggering DML statement, either just BEFORE the
row is processed or just AFTER.

• If five employees are in department 50, a row trigger
associated with an UPDATE on the employees table
would execute five times, storing five rows in the log file,
because of the following DML statement:

 UPDATE employees
 SET salary = salary * 1.1
 WHERE department_id = 50;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Creating a Row Trigger

• You specify a row trigger using FOR EACH ROW.

• With this trigger, the UPDATE statement from the
previous slide would cause five rows to be inserted into
the log table, one for each EMPLOYEE row updated.

• However, all five rows in the log table would be identical,
and they would not show which employee was updated or
how SALARY was changed.

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 INSERT INTO log_emp_table (who, when)
 VALUES (USER, SYSDATE);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using :OLD and :NEW Qualifiers

• When using a row trigger, you can reference and use both
old and new column values in the EMPLOYEES row
currently being updated.

• You use :OLD.column_name to reference the pre-
update value, and :NEW.column_name to reference
the post-update value.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using :OLD and :NEW Qualifiers

• For example, if the UPDATE statement is changing an
employee’s salary from $10,000 to $11,000, then while
the trigger is executing:
– :OLD.salary has a value of 10000
– :NEW.salary has a value of 11000.
– With this information, you can now insert the data you need

into the logging table.

• The next slide shows how.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using :OLD and :NEW Qualifiers

• To log the employee_id, does it matter whether you
code :OLD.employee_id or :NEW.employee_id?

• Is there a difference?

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :OLD.employee_id,
 :OLD.salary, :NEW.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

A Second Example of Row Triggers

CREATE OR REPLACE TRIGGER audit_emp_values

 AFTER DELETE OR INSERT OR UPDATE ON employees FOR EACH ROW

BEGIN

 INSERT INTO audit_emp(user_name, time_stamp, id,

 old_last_name, new_last_name, old_title,

 new_title, old_salary, new_salary)

 VALUES (USER, SYSDATE, :OLD.employee_id,

 :OLD.last_name, :NEW.last_name, :OLD.job_id,

 :NEW.job_id, :OLD.salary, :NEW.salary);

END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

A Second Example: Testing the
audit_emp_values Trigger

INSERT INTO employees
 (employee_id, last_name, job_id, salary, ...)
 VALUES (999, 'Temp emp', 'SA_REP', 1000,...);

UPDATE employees
 SET salary = 2000, last_name = 'Smith'
 WHERE employee_id = 999;

SELECT user_name, time_stamp, ...
 FROM audit_emp;

USER_NAME TIME_STAMP ID OLD_LAST_NAME NEW_LAST_NAME OLD_TITLE NEW_TITLE OLD_SALARY NEW_SALARY

APEX_PUBLIC_USER 04-Dec-2006 999 Temp emp Smith SA_REP SA_REP 1000 2000

APEX_PUBLIC_USER 04-Dec-2006 - - Temp emp - SA_REP - 1000

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

A Third Example of Row Triggers

Suppose you need to prevent employees who are not a
President or Vice-President from having a salary of more
than $15,000.
CREATE OR REPLACE TRIGGER restrict_salary
 BEFORE INSERT OR UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))
 AND :NEW.salary > 15000 THEN
 RAISE_APPLICATION_ERROR (-20202,
 'Employee cannot earn more than $15,000.');
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Testing the restrict_salary Trigger:

• King is a (Vice-)President, but Davies is not.
• This UPDATE statement produces the following error:

• Neither EMPLOYEES row is updated, because the
UPDATE statement must either succeed completely or
not at all.

UPDATE employees SET salary = 15500
 WHERE last_name IN ('King','Davies');

ORA-20202: Employee cannot earn more than $15,000.
ORA-06512: at “USVA_TEST_SQL01_T01.RESTRICT_SALARY”,line 4
ORA-04088: error during execution of trigger
‘USVA_TEST_SQL01_T01.RESTRICT_SALARY’ 2.
 WHERE last_name IN (‘King’, ‘Davies’);

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

A Fourth Example: Implementing an
Integrity Constraint With a Trigger

• The EMPLOYEES table has a foreign key constraint on the
DEPARTMENT_ID column of the DEPARTMENTS table.

• DEPARTMENT_ID 999 does not exist, so this DML
statement violates the constraint and the employee row is
not updated:

• You can use a trigger to create the new department

automatically. The next slide shows how.

UPDATE employees SET department_id = 999
 WHERE employee_id = 124;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

A Fourth Example: Creating the Trigger:

Let’s test it:

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
 BEFORE UPDATE OF department_id ON employees FOR EACH ROW
DECLARE
 v_dept_id departments.department_id%TYPE;
BEGIN
 SELECT department_id INTO v_dept_id FROM departments
 WHERE department_id = :NEW.department_id;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 INSERT INTO departments VALUES(:NEW.department_id,
 'Dept '||:NEW.department_id, NULL, NULL);
END;

UPDATE employees SET department_id = 999
 WHERE employee_id = 124;
-- Successful after trigger is fired

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using the REFERENCING Clause

• Look again at the first example of a row trigger:

• What if the EMPLOYEES table had a different name?
• What if it was called OLD instead?
• OLD is not a good name, but is possible.

• What would our code look like now?

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :OLD.employee_id,
 :OLD.salary, :NEW.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using the REFERENCING Clause

• The word "old" in this code means two things: it is a value
qualifier (like :NEW) and also a table name.

• The code will work, but is confusing to read.
• We don't have to use :OLD and :NEW.
• We can use different qualifiers by including a
REFERENCING clause.

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON old FOR EACH ROW
BEGIN
 INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :OLD.employee_id,
 :OLD.salary, :NEW.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using the REFERENCING Clause

•Using the REFERENCING Clause (continued)

• FORMER and LATTER are called correlation-names.
• They are aliases for OLD and NEW.
• We can choose any correlation names we like (for example
TOM and MARY) as long as they are not reserved words.

• The REFERENCING clause can be used only in row triggers.

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON old
 REFERENCING OLD AS former NEW AS latter FOR EACH ROW
BEGIN
 INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :former.employee_id,
 :former.salary, :latter.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using the WHEN clause

• Look at this trigger code. It records salary changes only if
the new salary is greater than the old salary.

• The whole trigger body is a single IF statement.

• In real life, this could be many lines of code, including
CASE statements, loops, and other constructs.

CREATE OR REPLACE TRIGGER restrict_salary
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 IF :NEW.salary > :OLD.salary THEN INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :OLD.employee_id,
 :OLD.salary, :NEW.salary);
 END IF;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Using the WHEN clause

• We can code our IF condition in the trigger header, just
before the BEGIN clause.

• This code is easier to read, especially if the trigger body is
long and complex.

• The WHEN clause can be used only with row triggers.

CREATE OR REPLACE TRIGGER restrict_salary
 AFTER UPDATE OF salary ON employees FOR EACH ROW
 WHEN (NEW.salary > OLD.salary)
BEGIN
 INSERT INTO log_emp_table
 (who, when, which_employee, old_salary, new_salary)
 VALUES (USER, SYSDATE, :OLD.employee_id,
 :OLD.salary, :NEW.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

INSTEAD OF Triggers

• A Complex View (for example a view based on a join)
cannot be updated.

• Suppose the EMP_DETAILS view is a complex view
based on a join of EMPLOYEES and DEPARTMENTS.

• The following SQL statement fails:

• You can overcome this by creating a trigger that updates

the two base tables directly instead of trying (and failing)
to update the view.

• INSTEAD OF triggers are always row triggers.

INSERT INTO emp_details
 VALUES (9001, 'ABBOTT', 3000, 10, 'Administration');

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

INSTEAD OF Triggers

Application

MY_VIEW

INSTEAD OF
trigger

INSERT
TABLE1

UPDATE
TABLE2

INSERT INTO my_view
 . . .;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

An Example of an INSTEAD OF Trigger

Perform the INSERT into the EMP_DETAILS view that is
based on the NEW_EMPS and NEW_DEPTS tables:

 INSTEAD OF INSERT

into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

1

2 3

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID
102 De Haan 90
101 Kochhar 90

100 King 90

10 Administration 7400

DEPARTMENT_ID DEPARTMENT_NAME DEPT_SAL

20 Marketing 19000

50 Shipping 17500
60 IT 19200 …

9001 3000 ABBOTT 10

EMPLOYEE_ID SALARY LAST_NAME DEPARTMENT_ID
100 24000 King 90

101 17000 Kochhar 90
102 17000 De Haan 90

INSERT INTO emp_details
 VALUES (9001, 'ABBOTT', 3000, 10, 'Administration');

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Creating an INSTEAD OF Trigger

Step 1: Create the tables and the Complex View:

CREATE TABLE new_emps AS
 SELECT employee_id,last_name,salary,department_id
 FROM employees;

CREATE TABLE new_depts AS
 SELECT d.department_id,d.department_name,
 sum(e.salary) dept_sal
 FROM employees e, departments d
 WHERE e.department_id = d.department_id
 GROUP BY d.department_id,d.department_name;

CREATE VIEW emp_details AS
 SELECT e.employee_id, e.last_name, e.salary,
 e.department_id, d.department_name
 FROM new_emps e, new_depts d
 WHERE e.department_id = d.department_id;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Creating an INSTEAD OF Trigger

Step 2: Create the INSTEAD OF Trigger:

• INSTEAD OF triggers are always row triggers.

CREATE OR REPLACE TRIGGER new_emp_dept
 INSTEAD OF INSERT ON emp_details
BEGIN
 INSERT INTO new_emps
 VALUES (:NEW.employee_id, :NEW.last_name,
 :NEW.salary, :NEW.department_id);
 UPDATE new_depts
 SET dept_sal = dept_sal + :NEW.salary
 WHERE department_id = :NEW.department_id;
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

Look at this row trigger. It adds a row to the LOG_TABLE
whenever an employee's salary changes.

CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
BEGIN
 INSERT INTO log_table (employee_id, change_date, salary)
 VALUES (:OLD.employee_id, SYSDATE, :NEW.salary);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

• What if there are one million employees and you give
every employee a 5% salary increase?

• The row trigger will automatically execute one million

times, INSERTing one row each time.

• This will be very slow.

UPDATE employees SET salary = salary * 1.05;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

• Earlier in the course you learned how to use Bulk Binding
(FORALL) to speed up DML.

• Can we use FORALL in our trigger?
CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
DECLARE
 TYPE t_log_emp IS TABLE OF log_table%ROWTYPE
 INDEX BY BINARY_INTEGER;
 log_emp_tab t_log_emp;
BEGIN
 ... Populate log_emp_tab with employees’ change data
 FORALL i IN log_emp_tab.FIRST..log_emp_tab.LAST
 INSERT INTO log_table VALUES log_emp_tab(i);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

• No, this will not work.
• Hint: remember this is a row trigger.
• Think about the scope of the LOG_EMP_TAB collection

variable.
CREATE OR REPLACE TRIGGER log_emps
 AFTER UPDATE OF salary ON employees FOR EACH ROW
DECLARE
 TYPE t_log_emp IS TABLE OF log_table%ROWTYPE
 INDEX BY BINARY_INTEGER;
 log_emp_tab t_log_emp;
BEGIN
 ... Populate log_emp_tab with employees’ change data
 FORALL i IN log_emp_tab.FIRST..log_emp_tab.LAST
 INSERT INTO log_table VALUES log_emp_tab(i);
END;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

• Trigger variables lose scope at the end of each execution
of the trigger.

• So each time the row trigger is fired, all the data already
collected in LOG_EMP_TAB is lost.

• To avoid losing this data, we need a trigger that fires only
once – a statement trigger.

• But to reference column values from each row (using
:OLD and :NEW) we need a row trigger.

• But a single trigger cannot be both a row trigger and a
statement trigger at the same time.

• Right?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Row Triggers Revisited

• Wrong!
• We create a Compound Trigger.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

What is a Compound Trigger?

• A single trigger that can include actions for each of the
four possible timing points: before the triggering
statement, before each row, after each row, and after the
triggering statement.

• A Compound Trigger has a declaration section and a
section for each of its timing points.

• You do not have to include all the timing points, just the
ones you need.

• The scope of Compound Trigger variables is the whole
trigger, so they retain their scope throughout the whole
execution.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Compound Trigger Structure

CREATE OR REPLACE TRIGGER trigger_name

 FOR dml_event_clause ON table_name COMPOUND TRIGGER

-- Initial section
 -- Declarations
 -- Subprograms

-- Optional section
BEFORE STATEMENT IS ...;

-- Optional section
AFTER STATEMENT IS ...;

-- Optional section
BEFORE EACH ROW IS ...;

-- Optional section
AFTER EACH ROW IS ...;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Compound Triggers: an Example:

This example has a declaration section and two of the four
possible timing point sections.

CREATE OR REPLACE TRIGGER log_emps
 FOR UPDATE OF salary ON employees COMPOUND TRIGGER
DECLARE
 TYPE t_log_emp IS TABLE OF log_table%ROWTYPE
 INDEX BY BINARY_INTEGER;
 log_emp_tab t_log_emp;
AFTER EACH ROW IS
BEGIN
 ... Populate log_emp_tab with employees’ change data
END AFTER EACH ROW;
AFTER STATEMENT IS
BEGIN
 FORALL ...
END AFTER STATEMENT;
END log_emps;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Compound Triggers Example: The Full
Code
CREATE OR REPLACE TRIGGER log_emps
 FOR UPDATE OF salary ON employees COMPOUND TRIGGER
DECLARE
 TYPE t_log_emp IS TABLE OF log_table%ROWTYPE
 INDEX BY BINARY_INTEGER;
 log_emp_tab t_log_emp;
 v_index BINARY_INTEGER := 0;
AFTER EACH ROW IS BEGIN
 v_index := v_index + 1;
 log_emp_tab(v_index).employee_id := :OLD.employee_id;
 log_emp_tab(v_index).change_date := SYSDATE;
 log_emp_tab(v_index).salary := :NEW.salary;
END AFTER EACH ROW;
AFTER STATEMENT IS BEGIN
 FORALL I IN log_emp_tab.FIRST..log_emp_tab.LAST
 INSERT INTO log_table VALUES log_emp_tab(i);
END AFTER STATEMENT;
END log_emps;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Terminology

Key terms used in this lesson included:
• Conditional predicate

• Compound trigger
• DML row trigger
• INSTEAD OF trigger

• :OLD and :NEW qualifiers

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S13L3
Creating DML Triggers: Part II

Summary

In this lesson, you should have learned how to:
• Create a DML trigger that uses conditional predicates

• Create a row-level trigger
• Create a row-level trigger that uses OLD and NEW qualifiers

• Create an INSTEAD OF trigger

• Create a Compound Trigger

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Using Conditional Predicates
	Using Conditional Predicates
	Using Conditional Predicates
	Using Conditional Predicates
	Understanding Row Triggers
	Understanding Row Triggers
	Row Trigger Firing Sequence
	Creating a Row Trigger
	Using :OLD and :NEW Qualifiers
	Using :OLD and :NEW Qualifiers
	Using :OLD and :NEW Qualifiers
	A Second Example of Row Triggers
	A Second Example: Testing the audit_emp_values Trigger
	A Third Example of Row Triggers
	Testing the restrict_salary Trigger:
	A Fourth Example: Implementing an Integrity Constraint With a Trigger
	A Fourth Example: Creating the Trigger:
	Using the REFERENCING Clause
	Using the REFERENCING Clause
	Using the REFERENCING Clause
	Using the WHEN clause
	Using the WHEN clause
	INSTEAD OF Triggers
	INSTEAD OF Triggers
	An Example of an INSTEAD OF Trigger
	Creating an INSTEAD OF Trigger
	Creating an INSTEAD OF Trigger
	Row Triggers Revisited
	Row Triggers Revisited
	Row Triggers Revisited
	Row Triggers Revisited
	Row Triggers Revisited
	Row Triggers Revisited
	What is a Compound Trigger?
	Compound Trigger Structure
	Compound Triggers: an Example:
	Compound Triggers Example: The Full Code
	Terminology
	Summary
	Slide Number 44

