

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
2-4
Using Scalar Data Types

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Objectives

This lesson covers the following objectives:
• Declare and use scalar data types in PL/SQL

• Define guidelines for declaring and initializing PL/SQL
variables

• Identify the benefits of anchoring data types with the %TYPE
attribute

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Purpose

• Most of the variables you define and use in PL/SQL have
scalar data types.

• A variable can have an explicit data type, such as VARCHAR2,
or it can automatically have the same data type as a table
column in the database.

• You will learn the benefits of basing some variables on table
columns.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Declaring Character Variables

• All variables must be declared.
• The data itself will determine what data type you assign to

each variable.
• Commonly used character data types include CHAR and
VARCHAR2.

• Columns that may exceed the 32,767 character limit of a
VARCHAR2 could be defined using LONG, but should be
defined using CLOB.

DECLARE
 v_country_id CHAR(2);
 v_country_name VARCHAR2(70);
 v_country_rpt CLOB;
...

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Declaring Number Variables

• Number data types include NUMBER, INTEGER,
PLS_INTEGER, BINARY_FLOAT and several others.

• Adding the keyword CONSTANT constrains the variable so
that its value cannot change.

• Constants must be initialized.

DECLARE
 v_employee_id NUMBER(6,0);
 v_loop_count INTEGER := 0;
 c_tax_rate CONSTANT NUMBER(3,2) := 8.25;
...

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Declaring Date Variables

Date data types include DATE, TIMESTAMP, and
TIMESTAMP WITH TIMEZONE.

DECLARE
 v_date1 DATE := '05-Apr-2015';
 v_date2 DATE := v_date1 + 7;
 v_date3 TIMESTAMP := SYSDATE;
 v_date4 TIMESTAMP WITH TIME ZONE := SYSDATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE(v_date1);
 DBMS_OUTPUT.PUT_LINE(v_date2);
 DBMS_OUTPUT.PUT_LINE(v_date3);
 DBMS_OUTPUT.PUT_LINE(v_date4);
END;

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Declaring BOOLEAN Variables

BOOLEAN is a data type that stores one of the three
possible values used for logical calculations: TRUE, FALSE,
or NULL.

 DECLARE
 v_valid1 BOOLEAN := TRUE;
 v_valid2 BOOLEAN;
 v_valid3 BOOLEAN NOT NULL := FALSE;
BEGIN
 IF v_valid1 THEN
 DBMS_OUTPUT.PUT_LINE('Test is TRUE');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Test is FALSE');
 END IF;
END;

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Using BOOLEAN Variables

When using BOOLEAN variables:
• Only the values TRUE, FALSE, and NULL can be assigned to

a BOOLEAN variable.
• Conditional expressions use the logical operators AND and
OR, and the operator NOT to check the variable values.

• The variables always yield TRUE, FALSE, or NULL.

• You can use arithmetic, character, and date expressions to
return a BOOLEAN value.

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Guidelines for Declaring PL/SQL Variables

• Use meaningful and appropriate variable names.
• Follow naming conventions. Use v_name to represent a

variable and c_name to represent a constant.

• Declare one identifier per line for better readability, code
maintenance, and easier commenting.

• Use the NOT NULL constraint when the variable must hold a
value.

• Use the CONSTANT constraint when the variable value
should not change within the block.

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

• Set initial values for BOOLEANs and NUMBERs.

• Avoid using column names as identifiers.

Guidelines for Declaring PL/SQL Variables

DECLARE
 first_name VARCHAR2(20);
BEGIN
 SELECT first_name
 INTO first_name
 FROM employees
 WHERE last_name = 'Vargas';
 DBMS_OUTPUT.PUT_LINE(first_name);
END;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Defining Variables with the %TYPE
Attribute

• Variables derived from database fields should be defined
using the %TYPE attribute, which has several advantages.

• For example, in the EMPLOYEES table, the column first_name
is defined as VARCHAR2(20).

• In a PL/SQL block, you could define a matching variable with
either:

 or

12

v_first_name VARCHAR2(20);

 v_first_name employees.last_name%TYPE;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Using the %TYPE Attribute

• Look at this partial table definition from the EMPLOYEES
table.

• Then look at the code in the next slide.

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Using the %TYPE Attribute

• This PL/SQL block stores the correct first name in the
v_first_name variable.

• But what if the table column is later altered to be
VARCHAR2(25) and a name longer than 20 characters is
added?

DECLARE
 v_first_name VARCHAR2(20);
BEGIN
 SELECT first_name
 INTO v_first_name
 FROM employees
 WHERE last_name = 'Vargas';
 DBMS_OUTPUT.PUT_LINE(v_first_name);
END;

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Using the %TYPE Attribute

The %TYPE attribute:

• Is used to automatically give a variable the same data type
and size as:
– A database column
– Another declared variable

• Is prefixed with either of the following:
– The database table name and column name
– The name of the other declared variable

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Using the %TYPE Attribute

• Syntax:

• Examples:

identifier table_name.column_name%TYPE;
identifier identifier%TYPE;

DECLARE
 v_first_name employees.first_name%TYPE;
 v_salary employess.salary%TYPE;
 v_old_salary v_salary%TYPE;
 v_new_salary v_salary%TYPE;
 v_balance NUMBER(10,2);
 v_min_balance v_balance%TYPE := 1000;
...

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Advantages of the %TYPE Attribute

Advantages of the %TYPE attribute are:

• You can avoid errors caused by data type mismatch or
wrong precision.

• You need not change the variable declaration if the table
column definition changes.

• Otherwise, if you have already declared some variables for
a particular table column without using the %TYPE
attribute, then the PL/SQL block can return errors if the
table column is altered.

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Advantages of the %TYPE Attribute

Advantages of the %TYPE attribute are:

• When you use the %TYPE attribute, PL/SQL determines the
data type and size of the variable when the block is compiled.

• This ensures that such a variable is always compatible with
the column that is used to populate it.

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Terminology

Key terms used in this lesson included:
• %TYPE

• BOOLEAN

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L4
Using Scalar Data Types

Summary

In this lesson, you should have learned how to:
• Declare and use scalar data types in PL/SQL

• Define guidelines for declaring and initializing PL/SQL
variables

• Identify the benefits of anchoring data types with the
%TYPE attribute

20

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Declaring Character Variables
	Declaring Number Variables
	Declaring Date Variables
	Declaring BOOLEAN Variables
	Using BOOLEAN Variables
	Guidelines for Declaring PL/SQL Variables
	Guidelines for Declaring PL/SQL Variables
	Defining Variables with the %TYPE Attribute
	Using the %TYPE Attribute
	Using the %TYPE Attribute
	Using the %TYPE Attribute
	Using the %TYPE Attribute
	Advantages of the %TYPE Attribute
	Advantages of the %TYPE Attribute
	Terminology
	Summary
	Slide Number 21

