

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Database Programming with
PL/SQL
2-5
Writing PL/SQL Executable Statements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Objectives

This lesson covers the following objectives:
• Construct accurate variable assignment statements in PL/SQL
• Construct accurate statements using built-in SQL functions in

PL/SQL
• Differentiate between implicit and explicit conversions of

data types
• Describe when implicit conversions of data types take place
• List the drawbacks of implicit data type conversions
• Construct accurate statements using functions to explicitly

convert data types
• Construct statements using operators in PL/SQL

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Purpose

• We’ve introduced variables and identifiers.
• In this lesson, you build your knowledge of the PL/SQL

programming language by writing code to assign variable
values.

• These values can be literals or values returned by a function.

• SQL provides a number of predefined functions that you can
use in SQL statements.

• Most of these functions are also valid in PL/SQL expressions.

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Assigning New Values to Variables

• Character and date literals must be enclosed in single
quotation marks.

• Statements can continue over several lines.

• Numbers can be simple values or scientific notation (2E5
meaning 2x10 to the power of 5 = 200,000).

v_name := 'Henderson';
v_start_date := '12-Dec-2005';

v_quote := 'The only thing that we can know is that we know
nothing and that is the highest flight of human reason.';

v_my_integer := 100;

v_my_sci_not := 2E5;

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

SQL Functions in PL/SQL

• You are already familiar with functions in SQL statements.
• For example:

• You can also use these functions in PL/SQL procedural
statements.

• For example:

SELECT LAST_DAY(SYSDATE)
 FROM DUAL;

DECLARE
 v_last_day DATE;
BEGIN
 v_last_day := LAST_DAY(SYSDATE);
 DBMS_OUTPUT.PUT_LINE(v_last_day);
END;

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

SQL Functions in PL/SQL

• Functions available in procedural statements:
– Single-row character
– Single-row number
– Date
– Data-type conversion
– Miscellaneous functions

• Not available in procedural statements:
– DECODE
– Group functions

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Character Functions

• Valid character functions in PL/SQL include:

• This is not an exhaustive list.
• Refer to the Oracle documentation for the complete list.

ASCII LENGTH RPAD

CHR LOWER RTRIM

CONCAT LPAD SUBSTR

INITCAP LTRIM TRIM

INSTR REPLACE UPPER

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Examples of Character Functions

• Get the length of a string:

• Convert the name of the country capitol to upper case:

• Concatenate the first and last names:

v_desc_size INTEGER(5);
v_prod_description VARCHAR2(70):='You can use this product
with your radios for higher frequency';

-- get the length of the string in prod_description
v_desc_size:= LENGTH(v_prod_description);

v_capitol_name:= UPPER(v_capitol_name);

v_emp_name:= v_first_name||' '||v_last_name;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Number Functions

• Valid number functions in PL/SQL include:

• This is not an exhaustive list.
• Refer to the Oracle documentation for the complete list.

ABS EXP ROUND

ACOS LN SIGN

ASIN LOG SIN

ATAN MOD TAN

COS POWER TRUNC

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Examples of Number Functions

• Get the sign of a number:

• Round a number to 0 decimal places:

DECLARE
 v_my_num BINARY_INTEGER := -56664;
BEGIN
 DBMS_OUTPUT.PUT_LINE(SIGN(v_my_num));
END;

DECLARE
 v_median_age NUMBER(6,2);
BEGIN
 SELECT median_age INTO v_median_age
 FROM countries WHERE country_id = 27;
 DBMS_OUTPUT.PUT_LINE(ROUND(v_median_age,0));
END;

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Date Functions

• Valid date functions in PL/SQL include:

• This is not an exhaustive list.

• Refer to the Oracle documentation for
the complete list.

ADD_MONTHS MONTHS_BETWEEN

CURRENT_DATE ROUND

CURRENT_TIMESTA
MP

SYSDATE

LAST_DAY TRUNC

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Examples of Date Functions

• Add months to a date:

• Calculate the number of months between two dates:

DECLARE
 v_new_date DATE;
 v_num_months NUMBER := 6;
BEGIN
 v_new_date := ADD_MONTHS(SYSDATE,v_num_months);
 DBMS_OUTPUT.PUT_LINE(v_new_date);
END;

DECLARE
 v_no_months PLS_INTEGER := 0;
BEGIN
 v_no_months := MONTHS_BETWEEN('31-Jan-2006','31-May-2005');
 DBMS_OUTPUT.PUT_LINE(v_no_months);
END;

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Data-Type Conversion

• In any programming language, converting one data type to
another is a common requirement.

• PL/SQL can handle such conversions with scalar data types.

• Data-type conversions can be of two types:
– Implicit conversions
– Explicit conversions

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Implicit Conversions

• In implicit conversions, PL/SQL attempts to convert data types
dynamically if they are mixed in a statement.

• Implicit conversions can happen between many types in
PL/SQL, as illustrated by the following chart.

DATE LONG NUMBER PLS_INTEGER VARCHAR2

DATE N/A X X

LONG N/A X

NUMBER X N/A X X

PLS_INTEGER X X N/A X

VARCHAR2 X X X X N/A

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Example of Implicit Conversion

• In this example, the variable v_sal_increase is of type
VARCHAR2.

• While calculating the total salary, PL/SQL first converts
v_sal_increase to NUMBER and then performs the
operation.

• The result of the operation is the NUMBER type.

DECLARE
 v_salary NUMBER(6) := 6000;
 v_sal_increase VARCHAR2(5) := '1000';
 v_total_salary v_salary%TYPE;
BEGIN
 v_total_salary := v_salary + v_sal_increase;
 DBMS_OUTPUT.PUT_LINE(v_total_salary);
END;

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Drawbacks of Implicit Conversions

At first glance, implicit conversions might seem useful;
however, there are several drawbacks:

• Implicit conversions can be slower.

• When you use implicit conversions, you lose control over your
program because you are making an assumption about how
Oracle handles the data.

• If Oracle changes the conversion rules, then your code can be
affected.

• Code that uses implicit conversion is harder to read and
understand.

17

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Drawbacks of Implicit Conversions

Additional drawbacks:

• Implicit conversion rules depend upon the environment in
which you are running.
– For example, the date format varies depending on the language

setting and installation type.
– Code that uses implicit conversion might not run on a different

server or in a different language.

• It is strongly recommended that you AVOID allowing SQL or
PL/SQL to perform implicit conversions on your behalf.

• You should use conversion functions to guarantee that the
right kinds of conversions take place.

18

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Drawbacks of Implicit Conversions

• It is the programmer's responsibility to ensure that values can
be converted.

• For instance, PL/SQL can convert the CHAR value '02-Jun-
1992' to a DATE value, but cannot convert the CHAR value
'Yesterday' to a DATE value.

• Similarly, PL/SQL cannot convert a VARCHAR2 value
containing alphabetic characters to a NUMBER value.

Valid? Statement
Yes v_new_date DATE := '02-Jun-1992';

No v_new_date DATE := 'Yesterday';

Yes v_my_number NUMBER := '123';

No v_my_number NUMBER := 'abc';

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Explicit Conversions

• Explicit conversions convert values from one data type to
another by using built-in functions.

• Examples of conversion functions include:

TO_NUMBER() ROWIDTONCHAR()

TO_CHAR() HEXTORAW()

TO_CLOB() RAWTOHEX()

CHARTOROWID() RAWTONHEX()

ROWIDTOCHAR() TO_DATE()

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Examples of Explicit Conversions

• TO_CHAR

• TO_DATE

BEGIN
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(SYSDATE,'Month YYYY'));
END;

BEGIN
 DBMS_OUTPUT.PUT_LINE(TO_DATE('April-1999','Month-YYYY'));
END;

21

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Examples of Explicit Conversions

• TO_NUMBER

DECLARE
 v_a VARCHAR2(10) := '-123456';
 v_b VARCHAR2(10) := '+987654';
 v_c PLS_INTEGER;
BEGIN
 v_c := TO_NUMBER(v_a) + TO_NUMBER(v_b);
 DBMS_OUTPUT.PUT_LINE(v_c);
END;

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Data Type Conversion Examples

• Example #1

• Example #2

• Example #3

v_date_of_joining DATE := '02-Feb-2014';

v_date_of_joining DATE := 'February 02, 2014';

v_date_of_joining DATE := TO_DATE('February 02, 2014',

 'Month DD, YYYY');

23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Operators in PL/SQL

The operations within an expression are performed in a
particular order depending on their precedence (priority).

• Logical
• Arithmetic
• Concatenation
• Parentheses to control

the order of operations
• Exponential operator (**)

Same as
in SQL

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Operators in PL/SQL

The following table shows the default order of operations from
high priority to low priority:

Operator Operation

** Exponentiation

+, - Identity, negation

*, / Multiplication, division

+, -, || Addition, subtraction, concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=, IS

NULL, LIKE, BETWEEN, IN
Comparison

NOT Logical negation

AND Conjunction

OR Inclusion

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Operators in PL/SQL Examples

• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

v_loop_count := v_loop_count + 1;

v_good_sal := v_sal BETWEEN 50000 AND 150000;

v_valid := (v_empno IS NOT NULL);

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Terminology

Key terms used in this lesson included:
• Explicit conversion

• Implicit conversion

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. PLSQL S2L5
Writing PL/SQL Executable Statements

Summary

In this lesson, you should have learned how to:
• Construct accurate variable assignment statements in PL/SQL
• Construct accurate statements using built-in SQL functions in

PL/SQL
• Differentiate between implicit and explicit conversions of

data types
• Describe when implicit conversions of data types take

placeList the drawbacks of implicit data type conversions
• Construct accurate statements using functions to explicitly

convert data types
• Construct statements using operators in PL/SQL

28

	Slide Number 1
	Database Programming with PL/SQL
	Objectives
	Purpose
	Assigning New Values to Variables
	SQL Functions in PL/SQL
	SQL Functions in PL/SQL
	Character Functions
	Examples of Character Functions
	Number Functions
	Examples of Number Functions
	Date Functions
	Examples of Date Functions
	Data-Type Conversion
	Implicit Conversions
	Example of Implicit Conversion
	Drawbacks of Implicit Conversions
	Drawbacks of Implicit Conversions
	Drawbacks of Implicit Conversions
	Explicit Conversions
	Examples of Explicit Conversions
	Examples of Explicit Conversions
	Data Type Conversion Examples
	Operators in PL/SQL
	Operators in PL/SQL
	Operators in PL/SQL Examples
	Terminology
	Summary
	Slide Number 29

