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Objectives 

This lesson covers the following objectives: 
• Construct accurate variable assignment statements in PL/SQL 
• Construct accurate statements using built-in SQL functions in 

PL/SQL 
• Differentiate between implicit and explicit conversions of 

data types 
• Describe when implicit conversions of data types take place 
• List the drawbacks of implicit data type conversions 
• Construct accurate statements using functions to explicitly 

convert data types 
• Construct statements using operators in PL/SQL 

 
3 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S2L5 
Writing PL/SQL Executable Statements 

Purpose  

• We’ve introduced variables and identifiers. 
• In this lesson, you build your knowledge of the PL/SQL 

programming language by writing code to assign variable 
values.  

• These values can be literals or values returned by a function. 

• SQL provides a number of predefined functions that you can 
use in SQL statements.  

• Most of these functions are also valid in PL/SQL expressions.  
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Assigning New Values to Variables 

• Character and date literals must be enclosed in single 
quotation marks. 

 
 

• Statements can continue over several lines. 

 
 

• Numbers can be simple values or scientific notation (2E5 
meaning 2x10 to the power of 5 = 200,000). 

 

 
 

 

v_name       := 'Henderson'; 
v_start_date := '12-Dec-2005'; 

v_quote := 'The only thing that we can know is that we know 
nothing and that is the highest flight of human reason.'; 

v_my_integer := 100; 

v_my_sci_not := 2E5; 

5 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S2L5 
Writing PL/SQL Executable Statements 

SQL Functions in PL/SQL 

• You are already familiar with functions in SQL statements.  
• For example: 

 
 

 

• You can also use these functions in PL/SQL procedural 
statements.  

• For example: 
 
 
 
 
 

 

 

SELECT LAST_DAY(SYSDATE)  
  FROM DUAL; 

DECLARE 
  v_last_day DATE; 
BEGIN 
  v_last_day := LAST_DAY(SYSDATE); 
  DBMS_OUTPUT.PUT_LINE(v_last_day); 
END; 
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SQL Functions in PL/SQL 

• Functions available in procedural statements: 
– Single-row character 
– Single-row number  
– Date 
– Data-type conversion 
– Miscellaneous functions 

• Not available in procedural statements: 
– DECODE 
– Group functions 
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Character Functions 

• Valid character functions in PL/SQL include: 
 
 
 
 
 
 
 

• This is not an exhaustive list.  
• Refer to the Oracle documentation for the complete list. 

 

ASCII LENGTH RPAD 

CHR LOWER RTRIM 

CONCAT LPAD SUBSTR 

INITCAP LTRIM TRIM 

INSTR REPLACE UPPER 

8 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S2L5 
Writing PL/SQL Executable Statements 

Examples of Character Functions 

• Get the length of a string: 
 
 

 
 

• Convert the name of the country capitol to upper case: 

 
• Concatenate the first and last names: 

v_desc_size        INTEGER(5); 
v_prod_description VARCHAR2(70):='You can use this product         
with your radios for higher frequency'; 
 
-- get the length of the string in prod_description 
v_desc_size:= LENGTH(v_prod_description); 

v_capitol_name:= UPPER(v_capitol_name); 

v_emp_name:= v_first_name||' '||v_last_name; 
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Number Functions 

• Valid number functions in PL/SQL include: 
 
 
 
 
 
 

• This is not an exhaustive list.  
• Refer to the Oracle documentation for the complete list. 

ABS EXP ROUND 

ACOS LN SIGN 

ASIN LOG SIN 

ATAN MOD TAN 

COS POWER TRUNC 
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Examples of Number Functions 

• Get the sign of a number: 
 

 
 

• Round a number to 0 decimal places:  

DECLARE 
  v_my_num BINARY_INTEGER := -56664; 
BEGIN 
  DBMS_OUTPUT.PUT_LINE(SIGN(v_my_num)); 
END; 

DECLARE 
  v_median_age NUMBER(6,2); 
BEGIN 
  SELECT median_age INTO v_median_age  
    FROM countries WHERE country_id = 27; 
  DBMS_OUTPUT.PUT_LINE(ROUND(v_median_age,0)); 
END; 
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Date Functions 

• Valid date functions in PL/SQL include: 
 
 
 
 
 

 
• This is not an exhaustive list.  

• Refer to the Oracle documentation for                                            
the complete list. 

 
 

 

ADD_MONTHS MONTHS_BETWEEN 

CURRENT_DATE ROUND 

CURRENT_TIMESTA
MP 

SYSDATE 

LAST_DAY TRUNC 
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Examples of Date Functions 

• Add months to a date: 
 

 
 

 

• Calculate the number of months between two dates: 

DECLARE 
  v_new_date   DATE; 
  v_num_months NUMBER := 6; 
BEGIN 
  v_new_date := ADD_MONTHS(SYSDATE,v_num_months); 
  DBMS_OUTPUT.PUT_LINE(v_new_date); 
END; 

DECLARE 
  v_no_months  PLS_INTEGER := 0; 
BEGIN 
  v_no_months := MONTHS_BETWEEN('31-Jan-2006','31-May-2005'); 
  DBMS_OUTPUT.PUT_LINE(v_no_months); 
END; 
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Data-Type Conversion 

• In any programming language, converting one data type to 
another is a common requirement.  

• PL/SQL can handle such conversions with scalar data types.  

• Data-type conversions can be of two types: 
– Implicit conversions 
– Explicit conversions 
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Implicit Conversions 

• In implicit conversions, PL/SQL attempts to convert data types 
dynamically if they are mixed in a statement.  

• Implicit conversions can happen between many types in 
PL/SQL, as illustrated by the following chart. 

 
 

 

 
 

DATE LONG NUMBER PLS_INTEGER VARCHAR2 

DATE N/A X X 

LONG N/A X 

NUMBER X N/A X X 

PLS_INTEGER X X N/A X 

VARCHAR2 X X X X N/A 
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Example of Implicit Conversion 

• In this example, the variable v_sal_increase is of type 
VARCHAR2.  

• While calculating the total salary, PL/SQL first converts 
v_sal_increase to NUMBER and then performs the 
operation.  

• The result of the operation is the NUMBER type.  

 

 

 

 

 
 

DECLARE 
  v_salary          NUMBER(6) := 6000; 
  v_sal_increase    VARCHAR2(5) := '1000'; 
  v_total_salary    v_salary%TYPE; 
BEGIN 
  v_total_salary := v_salary + v_sal_increase; 
  DBMS_OUTPUT.PUT_LINE(v_total_salary); 
END; 
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Drawbacks of Implicit Conversions 

At first glance, implicit conversions might seem useful; 
however, there are several drawbacks: 

• Implicit conversions can be slower. 

• When you use implicit conversions, you lose control over your 
program because you are making an assumption about how 
Oracle handles the data. 

• If Oracle changes the conversion rules, then your code can be 
affected. 

• Code that uses implicit conversion is harder to read and 
understand.  
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Drawbacks of Implicit Conversions 

Additional drawbacks: 

• Implicit conversion rules depend upon the environment in 
which you are running.  
– For example, the date format varies depending on the language 

setting and installation type.  
– Code that uses implicit conversion might not run on a different 

server or in a different language.  

• It is strongly recommended that you AVOID allowing SQL or 
PL/SQL to perform implicit conversions on your behalf.  

• You should use conversion functions to guarantee that the 
right kinds of conversions take place. 

 

 
18 

 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.   PLSQL S2L5 
Writing PL/SQL Executable Statements 

Drawbacks of Implicit Conversions 

• It is the programmer's responsibility to ensure that values can 
be converted.  

• For instance, PL/SQL can convert the CHAR value '02-Jun-
1992' to a DATE value, but cannot convert the CHAR value 
'Yesterday' to a DATE value.  

• Similarly, PL/SQL cannot convert a VARCHAR2 value 
containing alphabetic characters to a NUMBER value. 

 
 

 

 
 

Valid? Statement 
Yes v_new_date  DATE := '02-Jun-1992'; 

No v_new_date  DATE := 'Yesterday'; 

Yes v_my_number NUMBER := '123'; 

No v_my_number NUMBER := 'abc'; 
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Explicit Conversions 

• Explicit conversions convert values from one data type to 
another by using built-in functions.  

• Examples of conversion functions include: 

 
 

 

 
 

TO_NUMBER() ROWIDTONCHAR() 

TO_CHAR() HEXTORAW() 

TO_CLOB() RAWTOHEX() 

CHARTOROWID() RAWTONHEX() 

ROWIDTOCHAR() TO_DATE() 
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Examples of Explicit Conversions 

• TO_CHAR 
 

 

• TO_DATE 
 

 
 

 

BEGIN 
  DBMS_OUTPUT.PUT_LINE(TO_CHAR(SYSDATE,'Month YYYY')); 
END; 

BEGIN 
  DBMS_OUTPUT.PUT_LINE(TO_DATE('April-1999','Month-YYYY')); 
END; 
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Examples of Explicit Conversions 

• TO_NUMBER 
 

 

 
 

 
 

 

DECLARE 
  v_a VARCHAR2(10) := '-123456'; 
  v_b VARCHAR2(10) := '+987654'; 
  v_c PLS_INTEGER; 
BEGIN 
  v_c := TO_NUMBER(v_a) + TO_NUMBER(v_b); 
  DBMS_OUTPUT.PUT_LINE(v_c); 
END; 
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Data Type Conversion Examples 

• Example #1 

 

• Example #2 

 
• Example #3 

 
 

 

v_date_of_joining DATE := '02-Feb-2014'; 

v_date_of_joining DATE := 'February 02, 2014'; 

v_date_of_joining DATE := TO_DATE('February 02, 2014',        

   'Month DD, YYYY'); 
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Operators in PL/SQL 

The operations within an expression are performed in a 
particular order depending on their precedence (priority). 

 

 
 

 

 

 
 

• Logical 
• Arithmetic 
• Concatenation  
• Parentheses to control 

the order of operations 
• Exponential operator (**) 
 

Same as 
in SQL 
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Operators in PL/SQL 

The following table shows the default order of operations from 
high priority to low priority: 

 

 
 

 

 

 
 

Operator Operation 

** Exponentiation 

+, - Identity, negation 

*, / Multiplication, division 

+, -, || Addition, subtraction, concatenation 

=, <, >, <=, >=, <>, !=, ~=, ^=, IS 

NULL, LIKE, BETWEEN, IN 
Comparison 

NOT Logical negation 

AND Conjunction 

OR Inclusion 
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Operators in PL/SQL Examples 

• Increment the counter for a loop. 

 
• Set the value of a Boolean flag.  

 
• Validate whether an employee number contains a value. 

 

 
 

 

 
 

v_loop_count := v_loop_count + 1; 

v_good_sal := v_sal BETWEEN 50000 AND 150000; 

v_valid := (v_empno IS NOT NULL); 
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Terminology 

Key terms used in this lesson included: 
• Explicit conversion 

• Implicit conversion 
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Summary 

In this lesson, you should have learned how to: 
• Construct accurate variable assignment statements in PL/SQL 
• Construct accurate statements using built-in SQL functions in 

PL/SQL 
• Differentiate between implicit and explicit conversions of 

data types 
• Describe when implicit conversions of data types take 

placeList the drawbacks of implicit data type conversions 
• Construct accurate statements using functions to explicitly 

convert data types 
• Construct statements using operators in PL/SQL 
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