
SE	3200:	Web	Application	Development	I
Assignment:	Message	Log
Requirements

Using	Python,	create	a	server	web	application	which	implements	an	API	that	receives,	stores,	and
returns	simple	messages,	according	to	the	following	specifications:

Two	RESTful	routes:

POST	/messages :	receives	a	message	within	the	body	of	the	request	and	records	the	message	in
the	message	log,	by	writing	(appending)	the	message	to	a	file	on	the	local	filesystem.	The
server	should	respond	appropriately	with	the	status	code	 201	Created .	No	response	body
content	is	necessary.

GET	/messages :	returns	all	messages	contained	within	the	message	log,	by	reading	the
messages	from	the	file	on	the	local	filesystem.	The	data	should	be	returned	as	a	JSON	array
within	the	response	body,	and	the	server	should	respond	appropriately	with	the	status	code	 200
OK 	and	the	 Content-Type 	response	header	set	correctly.

Both	routes	should	be	implemented	according	to	REST	standards.	Test	both	of	your	routes
using	a	tool	such	as	Postman	or	curl.

CORS	should	be	implemented	server-wide	in	order	to	support	Ajax	requests	from	client	applications.

If	a	 GET 	or	 POST 	request	is	received	that	does	not	conform	to	the	paths	defined	above	(or	any	others
that	you	choose	to	implement),	then	the	server	should	return	an	appropriate	Not	Found	response,
with	the	correct	status	code,	and	content	that	properly	explains	the	reason	for	this	response.	The
content	type	may	be	plain	text	or	HTML;	set	the	response	header	correctly.

Using	JavaScript,	create	a	client	web	application	that	communicates	with	your	server	application,	using
its	API,	on	behalf	of	the	user,	with	the	following:

A	simple	form	that	allows	the	user	to	enter	a	message	and	click	a	button	to	record	their	message.
Upon	submission,	the	message	should	be	sent	to	the	server	API	using	the	Fetch	API,	using	the
appriorate	API	route	above.	The	form	should	be	styled	to	allow	the	user	to	easily	enter	a	message	of
any	length.

A	list	of	messages	that	contains	all	messages	returned	by	the	server	API,	displayed	in	the	order
they	are	given.	The	messages	should	be	requested	from	the	server	API	using	the	Fetch	API,	using
the	appropriate	API	route	above.	The	list	should	be	styled	to	cleanly	display	a	large	list	of
messages,	containing	messages	of	any	length.

After	the	user	submits	a	new	message	to	the	server	API,	the	list	should	be	refreshed	to	reflect	the
new	message.	After	the	server	responds	from	the	initial	request	which	sent	the	message,	a
subsequent	request	should	be	made	to	refresh	the	list.

All	data	sent	and	received	to	and	from	the	server	API	should	be	implemented	using	Ajax	requests.

You	may	take	liberties	to	modify	your	application’s	features	and	purpose	from	that	described	above,	but
the	overall	specifications	and	structure	listed	above	should	still	be	met.

Make	your	application	look	professional	and	presentable.	Use	valid	HTML	and	CSS	to	structure	and
style	your	application.

No	third-party	JavaScript	or	CSS	libraries	or	frameworks	may	be	used	without	prior	instructor
permission.

Submission
1.	 Submit	your	project	using	Git	and	GitHub.	Start	by	creating	a	repo	for	this	assignment	here.
2.	 Show	your	completed	assignment	to	the	instructor	during	class	or	office	hours	to	receive	credit.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://classroom.github.com/a/ZHTB7PcX

