
CS	1410:	Asteroids	Part	2
Nearly	everyone	has	played	or	at	least	heard	of	the	famous	arcade	game	Asteroids.	But,	if	you	have	not,	you
can	play	it	here.	The	game	involves	a	player-controlled	spaceship	that	can	turn	left	or	right,	accelerate
forward,	and	shoot	bullets.	A	collection	of	rocks	(asteroids)	move	through	space,	potentially	on	a	collision
course	with	the	spaceship.	If	a	collision	between	the	spaceship	and	a	rock	occurs,	then	the	spaceship	is
destroyed.	If	a	bullet	collides	with	a	rock,	the	rock	and	bullter	are	both	destroyed.	The	objective	of	the	game
is	to	eliminate	all	of	the	rocks,	by	successfully	shooting	them	from	the	spaceship,	before	a	devastating
collision	incident	occurs.

Assignment
Your	assignment	is	to	recreate	a	simple	Asteroids	game	using	Python	and	Pygame.	The	assignment	will
consist	of	two	sequential	parts.	For	this	second	part,	you	are	required	to	add	implementions	the	following
features	of	the	game:

1.	 A	bullet	must	fire	from	the	ship	and	travel	in	the	direction	the	ship	is	facing	at	the	time.	The	bullet	will
only	stay	active	for	a	limited	amount	of	time	after	being	fired.	Then,	it	should	disappear.

2.	 Collisions	between	any	rock	and	the	bullet	will	cause	the	bullet	and	the	rock	to	disappear.

3.	 Collisions	between	any	rock	and	the	ship	will	cause	the	game	to	end.

4.	 All	rocks	being	destroyed	will	cause	the	game	to	end.

5.	 Stars	will	be	displayed,	and	they	will	twinkle,	becoming	brighter	and	dimmer.

For	part	2	of	the	assignment,	only	the	above	additional	functionality	is	required.	You	are	welcome	to
continue	working	on	additional	features	once	you	complete	the	requirements	for	part	2,	but	it	is	your
responsibility	to	complete	the	requirements	for	part	2	of	the	assignment	first,	and	submit	it	by	the	due	date.

For	this	assignment,	you	are	required	to	demonstrate	use	of	the	object	oriented	principles	inheritance,
polymorphism	and	aggregation	when	implementing	the	classes	that	have	been	designed	for	you	to	represent
the	game	and	its	various	components.

You	should	use	your	solution	to	part	1	of	the	assignment	as	a	starting	point.

Part	2	Unit	Tests

Required	Classes
The	required	classes	are	listed	in	the	UML	Diagram.	Not	all	of	the	methods	will	be	described	in	detail	here.
For	example,	most	getter	methods	will	not	be	listed.	However,	if	they	are	in	the	UML	diagram,	they	are
required.	If	you	have	questions	about	the	required	functionality,	please	ask	questions	in	class	or	in	the
discussion	forums.

Only	changes	to	part	1	classes	are	listed	here.

	This	browser	does	not	support	PDFs.	Please	download	the	PDF	to	view	it:
Download	PDF.

Movable	Class
Movable	Data	Members

mActive 	boolean	value,	whether	the	object	is	active	or	not.

Movable	Methods

__init__ 	initializes	 mActive 	to	true.

http://www.freeasteroids.org/
http://www.pygame.org/
https://computing.utahtech.edu/cs/1410/labs/test_all_asteroids_part2.zip
https://computing.utahtech.edu/cs/1410/labs/asteroids-part2-uml.pdf
https://computing.utahtech.edu/cs/1410/labs/asteroids-part2-uml.pdf


getActive 	returns	the	value	of	the	 mActive 	data	member

setActive 	updates	the	data	member	to	the	value	in	the	parameter.

hits 	returns	true	if	this	object’s	“circular”	area	overlaps	with	that	of	the	other	object.	Use	the	circle
collision	technique	discussed	in	class.

getRadius 	is	an	abstract	method.	It	should	 raise	NotImplementedError .

Rotatable	Class
Rotatable	Data	Members

No	changes

Rotatable	Methods

No	changes

Polygon	Class
Polygon	Data	Members

No	changes

Polygon	Methods

getRadius 	For	each	point	in	the	original	polygon,	calculate	the	distance	from	the	origin.	Return	the
average	of	these	distances.	If	there	are	no	points,	return	0.

Ship	Class
Ship	Data	Members

No	changes

Ship	Methods

fire 	Creates	a	bullet	and	returns	it.	The	bullet	should	be	created	with	the	location	of	the	ship’s	rotated
and	translated	first	point.	Also,	the	bullet	will	have	the	same	velocity	components	as	the	ship	and	the
same	rotation	as	the	ship.

Rock	Class
Rock	Data	Members

No	changes

Rock	Methods

No	changes

Circle	Class
Circle	Data	Members

mRadius 	is	a	number	measured	in	pixels.	The	radius	of	the	circle.

mColor 	is	a	PyGame	color,	a	3-tuple	of	integers	in	the	range	0-255	describing	the	red,	green	and	blue
channels	of	the	color.

Circle	Methods

__init__ 	uses	constructor	chaining	to	initialize	the	 Rotatable 	data	members,	and	sets	the	object’s
radius	from	the	paramater,	and	sets	the	color	to	white.

setRadius 	updates	the	data	member,	but	only	if	the	new	value	is	at	least	1.

setColor 	updates	the	data	member.	It	assumes	the	new	color	is	valid.



draw 	Uses	the	PyGame	functions	to	draw	the	circle	described	by	the	 Movable 	position	and	the	radius.

Bullet	Class
Bullet	Data	Members

mAge 	the	number	of	seconds	the	bullet	has	been	in	existence.

Bullet	Methods

__init__ 	uses	constructor	chaining	to	initialize	all	 Circle 	data	members.	Bullets	all	have	a	radius	of	3.
Initializes	the	age	of	the	bullet	to	0.	Accelerates	the	bullet	100.0	units.	Moves	the	bullet	0.1	seconds
worth	of	movement.	Without	this,	it	will	hit	the	ship.

setAge 	updates	the	data	member,	assuming	the	parameter	is	correct.

evolve 	moves	the	bullet.	Adds	 dt 	to	the	age	of	the	bullet.	If	the	bullet	is	more	than	6	seconds	old,
makes	it	inactive.

Star	Class
Star	Data	Members

mBrightness 	an	integer	value.	The	current	star	brightness,	in	the	range	0	to	255.

Star	Methods

__init__ 	uses	constructor	chaining	to	initialize	all	 Circle 	data	members.	Stars	have	no	speed,	rotation
of	0,	and	radius	of	2.	Initializes	the	brightness	to	a	random	value.

setBrightness 	updates	the	data	member,	but	only	if	the	new	brightness	is	within	the	range	specified
above.	If	the	brightness	changes,	update	the	color	as	well.

evolve 	Tries	to	changes	the	brightness	by	adding	10,	subtracting	10,	or	doing	nothing,	each	with	equal
probability.

Asteroids	Class
Asteroids	Data	Members

mBullets 	a	list	of	all	 Bullet 	objects	active	in	the	game

mStars 	a	list	of	all	 Star 	objects	created

mObjects 	a	list	of	all	objects	active	in	the	game,	including	 Bullet s	and	 Star s.

Asteroids	Methods

__init__ 	Create	20	 Star s	in	random	locations	and	an	empty	 Bullet 	list.	Store	the	 Star s	in	the	correct
lists.

fire 	If	the	maximum	number	of	active	bullets	(3)	has	not	been	reached,	create	a	new	bullet,	add	it	to
the	appropriate	lists.	Refer	to	the	 Ship 	and	 Bullet 	classes.

evolveAllObjects 	Call	evolve	on	all	objects.

collideShipAndBullets 	Check	and	handle	collisions	between	bullets	and	ship.

collideShipAndRocks 	Check	and	handle	collisions	between	rocks	and	ship.

collideRocksAndBullets 	Check	and	handle	collisions	between	bullets	and	rocks.

removeInactiveObjects 	Removes	all	inactive	objects	from	all	lists.

evolve 	Be	sure	that	all	objects	evolve.	If	any	bullet	collides	with	the	ship,	the	ship	and	bullet	should
become	inactive.	If	any	bullet	collides	with	any	rock,	the	rock	and	bullet	should	become	inactive.	If	any
rock	collides	with	the	ship,	the	ship	and	bullet	should	become	inactive.	Remove	any	inactive	rocks	and
bullets	from	the	lists.	Use	the	methods	outlined	above,	in	the	correct	order.

draw 	Be	sure	that	all	objects	draw,	but	only	if	they	are	active.



main
game_logic 	Add	a	key	press	to	call	the	 fire 	method.	Be	sure	to	check	 newkeys ,	not	 keys .

Hints
Refer	to	the	Pygame	documentation	to	understand	which	parameters	are	necessary	when	calling	each	of
the	Pygame	draw	methods.	Specifically,	you	should	be	interested	in	 pygame.draw 	and	 pygame.Rect .

When	creating	colors,	use	a	helpful	tool	to	determine	the	RGB	values.	Here	are	two	good	options:
color.adobe.com	and	colorpicker.com

http://www.pygame.org/docs/
https://color.adobe.com/
http://www.colorpicker.com/

