
CS	1410:	Gas	Mileage

Introduction
With	gas	prices	constantly	fluctuating	and	consumers	being	more	conscientious	of	environmental	concerns,
fuel	economy	is	becoming	a	higher	priority	for	many.	Nevertheless,	the	vast	majority	of	drivers	don’t	know
how	to	accurately	measure	their	vehicle’s	actual	fuel	economy,	which	most	of	us	in	the	United	States
measure	in	miles	per	gallon.	But	with	a	little	bit	of	programming	help,	it’s	easy	to	calculate	and	track	gas
mileage	over	time.

Assignment
Your	program	will	gather	and	record	information	about	a	vehicle’s	mileage	and	gas	consumption,	and	then
use	this	information	to	calculate	the	vehicle’s	fuel	economy	in	miles	per	gallon.	Your	program	will	feature	a
very	simple	menu	that	allows	the	user	to	perform	any	one	of	four	operations,	one	at	a	time,	repeatedly	until
the	user	chooses	to	quit	the	program.	When	prompted,	the	user	may	select	one	of	the	four	operations	by
inputting	a	unique	letter	corresponding	to	one	of	the	operations.	The	four	operations	(and	their	unique
letters)	are:

1.	 [r]	Record	Gas	Consumption:	This	operation	allows	the	user	to	record	gas	consumption	when	they	fill
their	vehicle	with	gas.	It	asks	the	user	for	three	pieces	of	information:	the	date,	the	number	of	miles
traveled	since	the	vehicle	was	last	filled	with	gas,	and	the	number	of	gallons	of	gas	that	was	just	added
to	the	vehicle.	You	should	store	each	of	these	values	into	a	dictionary	that	contains	three	keys	(one	key
for	each	of	the	three	values),	and	then	save	the	dictionary	by	appending	it	to	a	list.

2.	 [l]	List	Mileage	History:	This	operation	does	not	ask	the	user	for	any	additional	information.	Your
program	will	print	a	list	of	all	recorded	gas	consumption	entries,	one	per	line.	Each	line	should	contain
the	date,	the	number	of	miles	traveled,	and	the	number	of	gallons	added.	Also	print	the	gas	mileage
(miles	per	gallon)	for	this	entry,	calculated	using	the	number	of	miles	traveled	and	the	number	of
gallons	added	(from	this	entry	only).

3.	 [c]	Calculate	Gas	Mileage:	This	operation	does	not	ask	the	user	for	any	additional	information.	Your
program	will	calculate	the	average	gas	mileage	from	all	recorded	gas	consumption	entries	and	print	the
average	gas	mileage	on	a	single	line.	If	no	gas	consumption	entries	have	been	recorded,	print	a	message
that	asks	the	user	to	first	record	their	gas	consumption.

4.	 [q]	Quit:	When	this	operation	is	selected,	your	program	will	print	a	friendly	goodbye	message	to	the
user	and	then	terminate.

5.	 Something	else?	If	the	user	enters	a	different	letter	or	phrase,	print	a	message	informing	the	user	that
this	option	is	invalid,	and	allow	them	to	try	again.

Extra	Challenges
Because	this	assignment	does	not	require	you	to	save	the	gas	consumption	records	to	a	file,	you	may
assume	that	all	records	will	be	lost	when	the	program	quits.	However,	wouldn’t	it	be	useful	if	the
records	were	not	lost?	Consider	upgrading	your	program	to	write	all	records	to	a	file	just	before	the
program	quits,	and	then	also	load	any	records	from	the	same	file	when	the	program	is	started	again.

Hints
Before	starting,	practice	using	dictionaries	and	lists.	You’ll	need	to	know	how	to	create	a	dictionary,	set
a	value	by	key,	retrieve	a	value	by	key,	append	a	dictionary	to	a	list,	and	iterate	over	a	list	of
dictionaries.

In	order	to	calculate	gas	mileage,	you	should	store	the	number	of	miles	traveled	and	the	number	of
gallons	added	as	float	values.	Here	is	a	simple	way	to	convert	a	string	or	integer	value	to	a	float	value:
gallons	=	float(gallons)



Sample
Program	execution:

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	l
You	first	need	to	record	your	gas	consumption!

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	c
You	first	need	to	record	your	gas	consumption!

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	r
What	is	the	date?	[I	hit	enter	on	the	keyboard]
What	is	the	date?				1/1/17	[I	add	spaces	before	the	date]
How	many	miles	did	you	drive	since	last	filling	up?	twelve
Please	enter	a	number.
How	many	miles	did	you	drive	since	last	filling	up?	-17
Please	enter	a	number	greater	than	zero.
How	many	miles	did	you	drive	since	last	filling	up?	0
Please	enter	a	number	greater	than	zero.
How	many	miles	did	you	drive	since	last	filling	up?	300
How	many	gallons	of	gas	did	you	add	to	your	tank?	zero
Please	enter	a	number.
How	many	gallons	of	gas	did	you	add	to	your	tank?	0
Please	enter	a	number	greater	than	zero.
How	many	gallons	of	gas	did	you	add	to	your	tank?	-1
Please	enter	a	number	greater	than	zero.
How	many	gallons	of	gas	did	you	add	to	your	tank?	10.0
Saved!

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	r
What	is	the	date?	1/25/17
How	many	miles	did	you	drive	since	last	filling	up?	200
How	many	gallons	of	gas	did	you	add	to	your	tank?	8
Saved!

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	l
On	1/1/17:	300.0	miles	traveled	using	10.0	gallons.	Gas	mileage:	30.0	MPG
On	1/25/17:	200.0	miles	traveled	using	8.0	gallons.	Gas	mileage:	25.0	MPG

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	c
Average	gas	mileage:	27.77777777777778	MPG

What	would	you	like	to	do?



[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	x
Sorry,	that	option	is	invalid.

What	would	you	like	to	do?
[r]	Record	Gas	Consumption
[l]	List	Mileage	History
[c]	Calculate	Gas	Mileage
[q]	Quit
Enter	an	option:	q
Bye!	See	you	next	time!

Instructions
Create	your	program	in	the	file	 gas_mileage.py .	Unit	tests	are	available	for	download.	Your	 gas_mileage.py
needs	to	be	in	the	same	folder	as	the	unittest	files.

You	must	follow	the	specifications	exactly,	but	may	choose	your	own	method	for	solving	the	problem
described	for	each.	Once	you	have	completed	a	function	you	should	run	the	unittest	for	that	function	and
have	it	pass	all	tests.	Fix	any	errors,	warnings,	and/or	failures.

Because	of	the	user	input	and	output,	not	all	functions	are	easily	tested	with	unit	tests.	Be	sure	to	test	these
functions	by	running	your	program	and	observing	the	correct	behavior.

milesPerGallon
createNotebook
recordTrip
listTrips
calculateMPG
formatMenu
formatMenuPrompt
getUserString
getUserFloat
getDate
getMiles
getGallons
recordTripAction
listTripsAction
calculateMPGAction
quitAction
applyAction
main

milesPerGallon

The	function	 milesPerGallon 	receives	two	parameters,	 miles 	and	 gallons ,	both	numbers	(floats	or	integers).
It	returns	the	float	value	from	dividing	miles	by	gallons.	If	the	value	of	gallons	equals	zero	the	function
should	return	 0.0 .	There	is	no	need	to	round	the	returned	values.

milePerGallon(300.0,	10.0)	->	30.0
milesPerGallon(215.0,	8.765)	->	24.529378208784937
milesPerGallon(300,	11)	->	27.272727272727273
milePerGallon(300,	0)	->	0.0

createNotebook

The	function	 createNotebook 	does	not	receive	any	parameters.	It	must	return	an	empty	list	to	use	as	a
“notebook”	to	track	your	trip	data.

createNotebook()	->	[]

recordTrip

https://computing.utahtech.edu/cs/1410/labs/gas_mileage.zip


The	function	 recordTrip 	takes	four	parameters,	the	notebook	list,	the	date	of	the	trip	(a	string),	the	miles
traveled	(a	float),	and	the	gallons	of	gas	pumped	(a	float).	It	creates	a	new	dictionary	for	the	trip	and	adds	it
to	the	notebook	list.	The	function	does	not	return	anything,	but	it	will	update	the	notebook	list.	Note:	the
order	of	the	pairs	in	the	trip	dictionary	does	not	matter.

notebook	=	[]
recordTrip(notebook,	'01/01/2017',	300.0,	10.0)
print(notebook)	->	[{'date':	'01/01/2017',	'miles':	300.0,	'gallons':	10.0}]
recordTrip(notebook,	'01/02/2017',	270.0,	8.6)
print(notebook)	->	[{'date':	'01/01/2017',	'miles':	300.0,	'gallons':	10.0},	{'date':	'01/02/2017',	
'miles':	270.0,	'gallons':	8.6}]

listTrips

The	function	 listTrips 	take	one	parameter,	the	notebook	list.	The	function	returns	a	list	of	strings.	Each
string	in	the	list	is	a	line	that	contains	the	date	of	the	trip,	the	miles	travel,	the	gallons	pumped,	and	the
miles	per	gallon	(mpg)	for	that	trip.	Consider	using	the	 milesPerGallon 	function	from	above.	See	the	example
from	above	for	an	example	on	how	to	format	the	line.	If	there	are	no	trips	in	the	notebook,	the	function
returns	an	empty	list.	The	function	should	not	modify	the	notebook.

You	may	round	your	float	numbers	to	2	decimal	places,	but	it	is	not	required.

notebook	=	[]
listTrips(notebook)	->	[]
notebook2	=	[
				{'date':	'1/15/16',	'miles':	300.0,	'gallons':	10.0},
				{'date':	'1/25/16',	'miles':	200.0,	'gallons':	8.0},
]
listTrips(notebook2)	->	['On	1/15/16:	300.0	miles	traveled	using	10.0	gallons.	Gas	mileage:	30.0	MPG',	'On	
1/25/16:	200.0	miles	traveled	using	8.0	gallons.	Gas	mileage:	25.0	MPG']

calculateMPG

The	function	 calculateMPG 	takes	one	parameter,	the	notebook	list.	The	function	calculates	the	Average	MPG
(calculated	from	total	miles	and	total	gallons)	for	all	trips	recorded	and	returns	it	as	a	float.	You	should	not
round	the	values.	If	there	are	no	trips	in	the	notebook	the	function	returns	 0.0 .	Do	not	use	milesPerGallon
function	from	above.	You	should	sum	all	the	miles	and	sum	all	the	gallons.	Using	those	sums,	calculate	the
average.	The	function	should	not	modify	the	notebook.

notebook	=	[]
calculateMPG(notebook)	->	0.0
notebook2	=	[
				{'date':	'1/15/16',	'miles':	300.0,	'gallons':	10.0},
				{'date':	'1/25/16',	'miles':	200.0,	'gallons':	8.0},
]
calculateMPG(notebook2)	->	27.77777777777778

formatMenu

The	function	 formatMenu 	does	not	receive	any	parameters.	It	must	return	a	list	of	strings	that	contains	the
lines	of	the	menu.

formatMenu()	->	['What	would	you	like	to	do?',	'[r]	Record	Gas	Consumption',	'[l]	List	Mileage	History',	
'[c]	Calculate	Gas	Mileage',	'[q]	Quit']

formatMenuPrompt

The	function	 formatMenuPrompt 	does	not	receive	any	parameters.	It	must	return	a	string	that	contains	the
prompt	to	ask	the	user	which	menu	option	they	would	like	to	select.

formatMenuPrompt()	->	'Enter	an	option:	'

getUserString



The	function	 getUserString 	receives	one	parameter,	a	string	that	contains	a	prompt	for	input.	It	must	return
a	string	that	contains	the	text	input	by	the	user,	with	any	leading	and	trailing	whitespace	removed.	If	the
user	gives	an	empty	string,	prompt	them	again,	until	they	give	a	non-empty	string.	Note	that	this	function
interacts	with	the	user,	so	there	will	be	output	to	the	screen	and	input	from	the	keyboard	when	it	is	called.

getUserString("What	is	your	name?	")	->	'It	is	Arthur,	King	of	the	Britons.'
getUserString("What	is	your	quest?	")	->	'To	seek	the	Holy	Grail.'
getUserString("What	is	the	air-speed	velocity	of	an	unladen	swallow?")	->	'What	do	you	mean?	An	African	or	
European	swallow?'

getUserFloat

The	function	 getUserFloat 	receives	one	parameter,	a	string	that	contains	a	prompt	for	input.	It	must	return	a
float	that	contains	the	number	input	by	the	user.	If	the	user	enters	a	non-number	or	a	number	less	than	or
equal	to	zero	it	should	prompt	them	again.	To	accomplish	this	you	might	consider	using	a	try/except	clause
which	allows	you	to	try	an	execute	some	code	(convert	user’s	input	to	a	float)	and	recover	if	it	fails.

Example

try:
				#	try	some	code
				float('this	is	a	string')
except:
				#	this	gets	called	if	anything	above	fails.
				print("you	can't	convert	that	string	to	a	float")

getUserFloat('Type	1.7	')	->	1.7
getUserFloat('Type	1	')	->	1.0
getUserFloat('Type	in	an	integer	')	->	10.0
getUserFloat('Type	in	a	float	')	->	3.142

getDate

The	function	 getDate 	does	not	receive	any	parameters.	It	must	prompt	the	user	for	a	date	and	return	the
date	input	by	the	user.	The	user’s	response	should	not	contain	leading	or	trailing	whitespace.	The	function
should	continue	to	ask	the	user	for	input	until	the	user	gives	a	valid	response.	Consider	calling
getUserString .

getDate()	->	'01/01/2107'
getDate()	->	'Jan	01'
getDate()	->	'user-typed-this'

getMiles

The	function	 getMiles 	does	not	receive	any	parameters.	It	must	prompt	the	user	to	input	a	number	and
return	the	float	value	of	that	number.	The	function	should	continue	to	prompt	the	user	until	their	input	is
valid	(float	or	integer	greater	than	zero).	Consider	calling	 getUserFloat .

getMiles()	->	300.0
getMiles()	->	217.6

getGallons

The	function	 getGallons 	does	not	receive	any	parameters.	It	must	prompt	the	user	to	input	a	number	and
return	the	float	value	of	that	number.	The	function	should	continue	to	prompt	the	user	until	their	input	is
valid	(float	or	integer	greater	than	zero).	Consider	calling	 getUserFloat .

getGallons()	->	12.0
getGallons()	->	9.99

recordTripAction

The	function	 recordTripAction 	receives	one	parameter,	the	notebook	list.	It	must	prompt	the	user	for	the

https://docs.python.org/3/tutorial/errors.html#handling-exceptions


date,	miles	traveled,	and	gallons	pumped	and	record	it	in	the	notebook.	All	inputs	must	be	valid.	Consider
using	functions	from	above.	Print	a	message	to	the	user	so	they	know	the	trip	was	saved.

recordTripAction(notebook)	->	the	notebook	should	be	modified.

listTripsAction

The	function	 listTripsAction 	receives	one	parameter,	the	notebook	list.	It	will	display	all	of	the	trips	in	the
format	shown	in	the	examples.	If	there	are	no	trips	in	the	notebook,	it	must	display	a	message	to	inform	the
user.	The	function	does	not	return	anything.	The	function	must	not	change	the	notebook.

listTripsAction(notebook)	->	the	notebook	should	NOT	be	modified.

calculateMPGAction

The	function	 calculateMPGAction 	receives	one	parameter,	the	notebook	list.	It	should	print	the	average	MPG
to	the	user.	If	there	are	no	trips	in	the	notebook	it	should	display	a	message	notifying	the	user	there	is	no
trip	data.	The	function	must	not	change	the	notebook.

You	may	round	your	float	number	to	2	decimal	places,	but	it	is	not	required.

calculateMPGAction(notebook)	->	the	notebook	should	NOT	be	modified.

quitAction

The	function	 quitAction 	receives	the	notebook	list	as	a	parameter.	This	function	will	display	a	message	to
the	user	indicating	the	end	of	the	program.	It	will	then	terminate	the	program	using	 sys.exit(	0	) .	Be	sure
to	do	the	correct	 import 	statement.	This	function	does	not	return	anything.

quitAction(notebook)	->	the	program	will	end

applyAction

The	function	 applyAction 	receives	the	notebook	list	and	a	choice	string	as	parameters.	This	function	will	call
the	appropriate	action	function	based	on	the	choice	string.	If	the	choice	string	does	not	match	any	accepted
choices,	it	will	display	a	message	to	the	user.	This	function	does	not	return	anything.	The	notebook	may	be
changed	as	a	result	of	the	chosen	action.

applyAction(notebook,	"r")	->	the	notebook	will	have	a	new	trip	added.
applyAction(notebook,	"l")	->	the	trips	will	be	displayed.
applyAction(notebook,	"c")	->	the	overall	average	MPG	will	be	displayed.
applyAction(notebook,	"q")	->	the	program	will	terminate.
applyAction(notebook,	"x")	->	the	user	will	receive	a	message.

main

The	function	 main 	receives	no	parameters,	and	returns	nothing.	This	function	ties	everything	together.
Create	a	notebook,	repeatedly	asking	the	user	their	choice	and	taking	appropriate	action.	Note:	everything
you	need	to	finish	the	main	function	should	be	contained	in	the	functions	above.

main()	->	the	program	runs.

Finishing	Up
Lastly	add	this	snippet	at	the	bottom	of	your	file	which	will	execute	your	 main() 	function	when	you	run
gas_mileage.py 	but	will	allow	it	to	be	imported	into	the	unittest	files	without	executing	the	main	function.

if	__name__	==	'__main__':
				main()



Pass-of	instructions
1.	 To	pass	off	this	assignment	you	need	to	show	your	completed	program	to	the	lab	assistants.

Show	them	your	 gas_mileage.py 	code
Run	 test_all.py 	-	All	tests	MUST	pass!
Run	 gas_mileage.py
The	lab	assistant	may	additional	tests	they	want	you	to	run

2.	 Upload	your	 gas_mileage.py 	file	to	canvas,	please	add	a	comment	to	the	top	of	the	file	with	your	name
and	time	your	class	meets.


