
CS	1410:	Pong
In	computer	science,	classes	and	object-oriented	programming	are	very	commonly	used	when	creating
programs	that	involve	computer	graphics	and	graphical	user	interfaces.	To	display	something	visually	on	the
screen,	like	a	button,	a	class	is	used	to	represent	a	Button,	and	multiple	instances	of	the	Button	class	can	be
created	to	display	multiple	buttons	on	the	screen	at	one	time.	This	is	the	foundation	on	which	all	modern
applications	are	created,	whether	it’s	on	your	computer,	phone,	or	television.

Pong	was	one	of	the	first	arcade	games	released	to	the	public.	In	this	assignment,	you	will	create	a	version	of
the	game.	You	can	watch	the	two	player	version	in	many	places.

Assignment
Your	assignment	is	to	create	a	program	using	Python	and	PyGame	that	allows	two	users	to	play	Pong,	using
the	architecture	listed	below.

This	is	a	sketch	of	the	active	elements	you	will	be	creating	for	this	project:

Part	1
The	assignment	is	broken	into	two	pieces.	In	the	first	part	you	are	required	to	create	the	 Ball 	class.	We
have	provided	Ball	class	unit	tests.

The	 Ball 	class	has	a	large	number	of	data	members,	getter	methods	for	most	of	the	members	and	about	a
dozen	methods	to	handle	the	details	of	the	ball’s	movement	and	interactions	with	the	paddles	and	walls.

It	is	common	to	use	the	Unified	Modeling	Language	(UML)	to	describe	an	outline	for	a	class	in	a	program’s
architecture.	This	UML	diagram	lists	the	data	members	and	methods	for	the	 Ball 	class.	The	top	section	lists
the	required	data	members.	Note	that	UML	does	not	display	 self. ,	as	it	is	implied.	The	bottom	section	lists
the	required	methods,	their	names,	and	their	parameter	lists.	Note	that	UML	does	not	display	the	 self
parameter,	as	it	is	implied.	The	 + 	at	the	front	of	each	line	means	that	this	method	is	intended	to	be	used	by
other	parts	of	the	program.	We	use	the	term	“public”.	The	data	members	do	not	have	a	 + .	This	is	because
other	parts	of	the	program	should	not	use	the	data	members	directly.

https://en.wikipedia.org/wiki/Pong
https://www.youtube.com/watch?v=ncB0ov5hT48
https://computing.utahtech.edu/cs/1410/labs/test_ball.zip


	This	browser	does	not	support	PDFs.	Please	download	the	PDF	to	view	it:
Download	PDF.

Ball	Data	Members

The	data	members	may	be	easier	to	understand	while	looking	at	a	picture.

The	data	members	track	the	position,	size	and	speed	of	the	 Ball .	They	also	keep	track	of	the	boundaries	of
the	ball’s	travel,	and	the	relevant	location	information	for	the	two	paddles.	Note	that	this	is	not	a	complete
representation	of	the	paddles	or	the	walls.	It’s	just	enough	to	let	the	ball	know	how	to	move	correctly.

mX 	and	 mY
This	is	the	position	of	the	top-left	corner	of	the	ball,	measured	in	pixels.	The	values	may	be	floating	point
numbers.

mSize

This	is	the	length,	in	pixels,	of	the	sides	of	the	ball.	The	ball	is	a	square.

mDX 	and	 mDY
This	is	the	speed	of	the	ball.	DX	is	short	for	delta-x,	and	DY	for	delta-y.	These	are	measured	in	pixels	per
second.

mMinX

This	is	the	smallest	value	that	 mX 	may	be	set	to.	It	represents	the	wall	on	the	left	side	of	the	screen.

https://computing.utahtech.edu/cs/1410/labs/pong_ball_UML.pdf


mMaxX

This	is	the	largest	 X 	value	that	any	part	of	the	ball	can	have.	It	represents	the	wall	on	the	right	side	of	the
screen.	Remember	that	the	ball	is	 mSize 	pixels	wide.	The	largest	value	of	 mX 	must	be	 mSize 	less	than	 mMaxX .

mMinY

This	is	the	smallest	value	that	 mY 	may	be	set	to.	It	represents	the	wall	on	the	top	of	the	screen.

mMaxY

This	is	the	largest	 Y 	value	that	any	part	of	the	ball	can	have.	It	represents	the	wall	on	the	bottom	of	the
screen.	Remember	that	the	ball	is	 mSize 	pixels	high.	The	largest	value	of	 mY 	must	be	 mSize 	less	than	 mMaxY .

mLeftPaddleX

This	represents	the	side	of	the	left	paddle	that	the	ball	may	bounce	from.

mLeftPaddleMinY

This	represents	the	top	of	the	left	paddle.

mLeftPaddleMaxY

This	represents	the	bottom	of	the	left	paddle.

mRightPaddleX

This	represents	the	side	of	the	right	paddle	that	the	ball	may	bounce	from.

mRightPaddleMinY

This	represents	the	top	of	the	right	paddle.

mRightPaddleMaxY

This	represents	the	bottom	of	the	right	paddle.

Ball	Methods

The	 Ball 	class	has	a	long	list	of	methods,	but	many	are	simple	getter	methods.	We	will	not	discuss	them
here,	but	you	must	implement	them	for	the	unit	tests	to	pass.

__init__(size,	min_x,	max_x,	min_y,	max_y,	left_paddle_x,	right_paddle_x)

This	method	initializes	all	of	the	data	members	shown	in	the	UML	diagram.	Many	of	the	data	members	are
initialized	from	the	parameters	to	the	method.	Set	 mX 	and	 mY 	using	 min_x 	and	 min_y .	Set	 mDX 	and	 mDY 	to	 0 .
set	the	paddle	mininum	y	values	to	 min_y 	and	the	paddle	maximum	y	values	to	 max_y .	If	you’re	not	sure	what
initial	value	to	assign	to	a	data	member,	ask	in	the	class	discussion	forums.

Getters
Implement	all	of	the	getters	shown	in	the	UML	diagram.

setPosition(x,	y)

Updates	the	 mX 	and	 mY 	data	members,	but	only	if	the	new	values	are	within	the	minimum	and	maximum
values	specified	by	the	data	members.	If	either	of	the	new	values	is	incorrect,	do	not	change	anything.

setSpeed(dx,	dy)

Updates	the	 mDX 	and	 mDY 	data	members.	Does	not	check	the	values.

setLeftPaddleY(paddle_min_y,	paddle_max_y)

Updates	the	 mLeftPaddleMinY 	and	 mLeftPaddleMaxY 	data	members,	but	only	if	the	new	values	are	within	the
minimum	and	maximum	values	specified	by	the	data	members.	Only	sets	the	two	data	members	if	the
parameters	are	valid.	This	means	the	minimum	must	not	be	less	than	 mMinY 	and	the	maximum	must	not	be
more	than	 mMaxY .	Also,	the	minimum	must	be	less	than	the	maximum.



setRightPaddleY(paddle_min_y,	paddle_max_y)

Updates	the	 mRightPaddleMinY 	and	 mRightPaddleMaxY 	data	members,	but	only	if	the	new	values	are	within	the
minimum	and	maximum	values	specified	by	the	data	members.	See	notes	in	 setLeftPaddleY .

checkTop(new_y)

Receives	the	proposed	 new_y 	value	for	the	ball.	If	traveling	from	the	current	y	position	to	the	new	y	position
would	not	cause	the	ball	to	bounce	from	the	top	wall,	then	return	 new_y 	unchanged.	If	the	value	would	cause
the	ball	to	bounce,	then	reverse	the	sign	of	 mDY ,	calculate	the	corrected	 new_y 	value	and	return	the
corrected	value.	The	picture	below	may	help.

checkBottom(new_y)

Receives	the	proposed	 new_y 	value	for	the	ball.	If	the	new	y	value	would	not	cause	the	ball	to	bounce	from
the	bottom	wall,	then	return	 new_y 	unchanged.	If	the	value	would	cause	the	ball	to	bounce,	then	reverse	the
sign	of	 mDY ,	calculate	the	corrected	 new_y 	value	and	return	the	corrected	value.	This	is	similar	to	 checkTop ,
but	you	need	to	include	the	ball’s	size	in	your	calculations.	This	is	because	the	bottom	of	the	ball	will	bounce
from	the	bottom	wall.	This	is	similar	to	the	way	 checkRight 	accounts	for	the	right	side	of	the	ball	touching
the	right	wall.

checkLeft(new_x)

Receives	the	proposed	 new_x 	value	for	the	ball.	If	the	new	x	value	would	not	cause	the	ball	to	touch	the	left
wall,	then	return	 new_x 	unchanged.	If	the	value	would	cause	the	ball	to	touch,	then	stop	the	ball,	calculate
the	corrected	 new_x 	value	and	return	it.	Note	that	this	will	cause	the	ball	to	stick	to	the	wall	where	it
touches.

checkRight(new_x)

Receives	the	proposed	 new_x 	value	for	the	ball.	If	the	new	x	value	would	not	cause	the	ball	to	touch	the	right
wall,	then	return	 new_x 	unchanged.	If	the	value	would	cause	the	ball	to	touch,	then	stop	the	ball,	calculate
the	corrected	 new_x 	value	and	return	it.	Note	that	this	will	cause	the	ball	to	stick	to	the	wall	where	it
touches.

The	picture	below	may	help.



checkLeftPaddle(new_x,	new_y)

Receives	the	proposed	 new_x 	and	 new_y 	values	for	the	ball.	If	the	new	x	and	new	y	values	would	not	cause
the	ball	to	touch	the	left	paddle,	then	return	 new_x 	unchanged.	If	the	value	would	cause	the	ball	to	touch,
then	bounce	the	ball	from	the	paddle.	This	requires	the	 mDX 	to	change	signs.	Calculate	the	corrected	 new_x
value	and	return	it.

If	the	ball’s	x	coordinate	is	already	to	the	left	of	the	paddle’s	coordinate,	there	is	no	collision.	If	the	ball	is
moving	right,	there	is	no	collision.

To	touch	the	paddle,	the	ball’s	 mid_y 	value	must	be	between	the	paddle’s	minimum	and	maximum	y	values.
mid_y 	is	the	average	of	the	ball’s	current	y	position,	and	the	new	y	position.	The	picture	below	may	help.

Note	that	this	is	not	a	perfect	collision	algorithm,	but	it	will	suffice	for	the	game	we	are	creating.



checkRightPaddle(new_x,	new_y)

Receives	the	proposed	 new_x 	and	 new_y 	values	for	the	ball.	If	the	new	x	and	new	y	values	would	not	cause
the	ball	to	touch	the	right	paddle,	then	return	 new_x 	unchanged.	If	the	value	would	cause	the	ball	to	touch,
then	bounce	the	ball	from	the	paddle.	This	requires	the	 mDX 	to	change	signs.	Calculate	the	corrected	 new_x
value	and	return	it.

To	touch	the	paddle,	the	ball’s	 mid_y 	value	must	be	between	the	paddle’s	minimum	and	maximum	y	values.

move(dt)

Receives	 dt ,	the	amount	of	seconds	that	have	passed	since	the	last	frame.	Uses	 mX ,	 mDX 	and	 dt 	to	calculate
new_x ,	the	proposed	new	x	position	of	the	ball.	Does	similarly	to	calculate	 new_y .	Uses	 checkTop ,
checkBottom ,	 checkLeft ,	 checkRight ,	 checkLeftPaddle 	and	 checkRightPaddle 	to	update	the	values	of	 new_x 	and
new_y .	Note	that	these	methods	will	also	change	the	sign	of	 mDX 	and/or	 mDY 	if	necessary.	 move 	doesn’t	need
to	worry	about	it.	Finally	sets	 mX 	and	 mY 	from	the	possibly	updated	values	of	 new_x 	and	 new_y .

serveLeft(x,	min_y,	max_y,	min_dx,	max_dx,	min_dy,	max_dy)

Recieves	several	parameters.	Sets	the	ball’s	position	using	the	 x 	parameter	and	a	y-value	randomly	chosen
between	 min_y 	and	 max_y .	You	may	want	to	look	at	the	 random.uniform() 	function.	Sets	the	ball’s	 mDX 	to	a
randomly	chosen	value	between	 min_dx 	and	 max_dx .	Sets	the	ball’s	 mDY 	to	a	randomly	chosen	value	between
min_dy 	and	 max_dy

serveRight(x,	min_y,	max_y,	min_dx,	max_dx,	min_dy,	max_dy)

Recieves	several	parameters.	Sets	the	ball’s	position	using	the	 x 	parameter	and	a	y-value	randomly	chosen
between	 min_y 	and	 max_y .	You	may	want	to	look	at	the	 random.uniform() 	function.	Sets	the	ball’s	 mDX 	to	a
randomly	chosen	value	between	 -min_dx 	and	 -max_dx .	Sets	the	ball’s	 mDY 	to	a	randomly	chosen	value
between	 min_dy 	and	 max_dy

draw(surface)

Uses	PyGame	to	draw	the	rectangle	for	the	ball.	There	are	no	unit	tests	for	this	method.	It	will	be	verified
during	the	acceptance	tests	for	pass-off	of	the	full	game.



Part	2
This	part	of	the	assignment	requires	the	addition	of	classes	for	 Paddle ,	 Wall ,	 ScoreBoard 	and	 Pong .

Each	of	the	classes	has	required	data	members	and	methods.	The	updated	UML	Diagram	contains	all	of	the
classes	and	their	required	methods.	Not	all	data	members	or	methods	will	be	discussed	below.	If	you	have
questions,	ask.

	This	browser	does	not	support	PDFs.	Please	download	the	PDF	to	view	it:
Download	PDF.

All	Pong	unit	tests.

Paddle 	class
Paddle	Data	Members

mX 	and	 mY
This	is	the	position	of	the	top-left	corner	of	the	paddle,	measured	in	pixels.	The	values	may	be	floating	point
numbers.

mWidth 	and	 mHeight
This	is	the	horizontal	and	vertical	size	of	the	paddle’s	rectangle,	measured	in	pixels.

mSpeed

This	is	the	vertical	speed	of	the	paddle,	measured	in	pixels	per	second.

mMinY 	and	 mMaxY
These	describe	the	position	of	the	top	and	bottom	walls.	The	paddle	may	not	cross	into	either	wall.

Paddle	Methods

__init__(x,y,width,height,speed,min_y,max_y)

Initialize	the	paddle	data	members	from	the	parameters.	 min_y 	and	 max_y 	refer	to	the	top	and	bottom	of	the
field	of	play.

Getters
Implement	the	getters.

getRightX()

Returns	the	x	coordinate	of	the	right	side	of	the	paddle.

getBottomY()

Returns	the	y	coordinate	of	the	bottom	of	the	paddle.

setPosition(y)

Updates	the	y	position	of	the	paddle.	If	the	new	y	position	would	cause	the	top	of	the	paddle	to	go	into	the
top	wall	or	the	bottom	of	the	paddle	to	go	int	the	bottom	wall,	do	not	make	any	changes.

moveUp(dt)

Updates	the	y	position	of	the	paddle	based	on	the	time	 dt ,	and	the	paddle’s	speed.	If	the	paddle	would	move

https://computing.utahtech.edu/cs/1410/labs/pong_all_UML.pdf
https://computing.utahtech.edu/cs/1410/labs/pong_all_UML.pdf
https://computing.utahtech.edu/cs/1410/labs/test_all_pong.zip


into	the	top	of	the	allowed	region,	stop	at	the	top.

moveDown(dt)

Updates	the	y	position	of	the	paddle	based	on	the	time	 dt ,	and	the	paddle’s	speed.	If	the	paddle	would	move
into	the	bottom	of	the	allowed	region,	stop	at	the	bottom.

draw(surface)

Uses	PyGame	to	draw	the	rectangle	for	the	paddle.	There	are	no	unit	tests	for	this	method.	It	will	be	verified
during	the	pass-off	of	the	full	game.

Wall 	class
Wall	Data	Members

mX 	and	 mY
This	is	the	top-left	position	of	the	wall,	measured	in	pixels.

mWidth 	and	 mHeight
This	is	the	horizontal	and	vertical	size	of	the	wall,	measured	in	pixels.

Wall	Methods

__init__(x,y,width,height)

Initialize	the	wall	data	members	from	the	parameters.

Getters
Implement	the	getters.

getRightX()

Returns	the	x	coordinate	of	the	right	side	of	the	wall.

getBottomY()

Returns	the	y	coordinate	of	the	bottom	of	the	wall.

draw(surface)

Uses	PyGame	to	draw	the	rectangle	for	the	wall.	There	are	no	unit	tests	for	this	method.	It	will	be	verified
during	the	pass-off	of	the	full	game.

ScoreBoard 	class
ScoreBoard	Data	Members

mX 	and	 mY
This	is	the	top-left	corner	of	the	rectangle	that	contains	the	score	board.	Measured	in	pixels.

mWidth 	and	 mHeight
This	is	the	horizontal	and	vertical	size	of	the	rectangle	that	contains	the	score	board.	Measured	in	pixels.

mLeftScore 	and	 mRightScore
These	are	the	numeric	scores	of	the	left	and	right	players.	Stored	as	integers,	measured	in	points.

mServeStatus

This	records	information	about	which	player	should	serve	next.	 1 	means	left	player	serves	next.	 2 	means
right	player	serves	next.	 3 	means	left	has	won.	 4 	means	right	has	won.



ScoreBoard	Methods

__init__(x,y,width,height)

Initialize	the	data	members	from	the	parameters.	Set	 mLeftScore 	and	 mRightScore 	to	 0 .	Set	mServeStatus	to
1 ,	which	means	it	is	the	left	player’s	turn	to	serve.	The	 mServeStatus 	data	member	can	be	 1 :	left’s	turn	to
serve,	 2 :	right’s	turn	to	serve,	 3 :	left	has	won	or	 4 :	right	has	won.

Getters
Implement	the	getters.

isGameOver()

If	the	 mServeStatus 	indicates	the	game	is	over,	return	 True .	Otherwise,	return	 False .

scoreLeft()

Give	a	point	to	the	player	on	the	left.	If	the	left	player’s	score	is	 9 ,	then	set	status	to	left	player	win.	This
method	should	make	no	changes	if	the	game	is	already	over.

scoreRight()

Give	a	point	to	the	player	on	the	right.	If	the	right	player’s	score	is	 9 ,	then	status	to	right	player	win.	This
method	should	make	no	changes	if	the	game	is	already	over.

swapServe()

If	the	serve	status	is	left	serve,	change	it	to	right	serve.	If	it	is	right	serve,	change	it	to	left	serve.	If	the
game	is	already	over,	do	not	change	anything.

draw(surface)

Uses	PyGame	to	draw	the	score	in	the	area	defined	by	the	data	members.	Use	the	 Text 	class	provided	with
the	starter	code	to	draw	text.	There	are	no	unit	tests	for	this	method.	It	will	be	verified	during	the	pass-off
of	the	full	game.

Pong 	class
There	is	a	 Pong 	class	included	with	the	starter	kit	download.	It	uses	all	of	your	classes	to	implement	the	game.
Your	acceptance	test	is	to	demonstrate	the	working	game.

Extra	Challenges
Define	an	end	game	(e.g.	first	to	9	points	wins).

Display	the	winner.

Add	a	start	screen,	and	allow	the	user	to	start	the	game.

Add	a	restart	option	to	the	game	so	the	player	doesn’t	have	to	exit	the	application	and	start	it	again	to
restart	game	play.

Add	sound.

Add	images	for	display.

Hints
Refer	to	the	Pygame	documentation	to	understand	which	parameters	are	necessary	when	calling	each	of
the	Pygame	draw	methods.	Specifically,	you	should	be	interested	in	 pygame.draw 	and	 pygame.Rect .

When	creating	colors,	use	a	helpful	tool	to	determine	the	RGB	values.	Here	are	two	good	options:
color.adobe.com	and	colorpicker.com

https://computing.utahtech.edu/cs/1410/labs/pong_starter.zip
http://www.pygame.org/docs/
https://color.adobe.com/
http://www.colorpicker.com/

