Assignment

Problems identified by x.y(z) denote the problem “y”, in chapter “x” of the textbook, with part “z”. If “z” is not noted, then the entire problem is required.

Assignment 2a

- 2.5(a, c, e) Use the master theorem, show work.
- Solve recurrence relation \(T(n) = 2T(n/3) + n \). Use the master theorem, show work.

Assignment 2b

- 2.5(b, d) Use the master theorem, show comparison.
- Solve recurrence relation \(T(n) = 8T(n/3) + n^2 \). Use the master theorem, show work.
- 2.5(g) Use the substitution method. Show the pattern and determination of \(k_{\text{max}} \).
- Write the function `unsigned int binary_search(const std::vector< int > &data, int value)`. Verify that the function will correctly find the index of \(\text{value} \) within \(\text{data} \). You may assume that \(\text{value} \) is present, and \(\text{data} \) is already sorted in ascending order. At the top of your source, include a comment with your estimated Big-Oh complexity of the algorithm.

Assignment 2c

- 2.5(f, h) Use the substitution method. Show the pattern and determination of \(k_{\text{max}} \).
- 2.16 Find an algorithm, give pseudo-code, argue correctness, analyze the runtime, showing it is \(O(\log(n)) \). The values stored are integers, \textit{not necessarily positive} Hint: You should know how to find items in a sorted array in \(O(\log(n)) \).
- Write the function `unsigned int ternary_search(const std::vector< int > &data, int value)`. Verify that the function will correctly find the index of \(\text{value} \) within \(\text{data} \). You may assume that \(\text{value} \) is present, and \(\text{data} \) is already sorted in ascending order. At the top of your source, include a comment with your estimated Big-Oh complexity of the algorithm. \(\text{ternary_search} \) divides its input array into 3 equally sized groups, in the same way that \(\text{binary_search} \) divides into 2 equally sized groups.

Assignment 2d

- 2.5(i, j) Use the substitution method. Show the pattern and determination of \(k_{\text{max}} \).
- 2.19 Analyze the complexity of the algorithm for part (a). Provide your divide and conquer solution and its complexity analysis for part (b).
- Time \(\text{binary_search} \) and \(\text{ternary_search} \) on vectors of sizes \(2^0, 2^1, \ldots, 2^{30} \). Be sure to do correct statistical data collection. Submit a table of the data collected, and declaration of which appears to be faster.

Assignment 2e

- 2.5(k) Use the substitution method. Show the pattern and determination of \(k_{\text{max}} \).
- 2.22 Find an algorithm, give pseudo-code, argue correctness, analyze the runtime, showing it is \(O(\log(m) + \log(n)) \).
- If one algorithm is \(O(\log(m+n)) \), another is \(O(\log(m) + \log(n)) \), which is more efficient? Give your proof.
- Chart the normalized runtimes of \(\text{binary_search} \) and \(\text{ternary_search} \), along with \(N^{1/2}, N^{1/3}, \log_2(N), \log_3(N) \) and 1. Submit the chart, and a statement discussing which algorithm has better Big-Oh, and which algorithm is faster.

Assignment 2f, Due Never (optional)

- 2.14 Find a divide-and-conquer algorithm, write the recurrence relation, solve it.
- 2.34 Find a divide-and-conquer algorithm, write the recurrence relation, solve it. The book says “linear”. We are not as optimistic. Any polynomial divide-and-conquer algorithm is acceptable.

Assignment 2z, Due Never (optional)

- 2.4(A) Write down the recurrence relation. Solve it.
- 2.4(B) Write down the recurrence relation. Solve it.
- 2.4(part C) Write down the recurrence relation. Solve it.
- 2.4 Which would you choose?
• 2.25(a) Fill in the missing code, give a recurrence relation, and solve it.
• 2.25(b) Fill in the missing code, give a recurrence relation, and solve it.
• 2.17 Find an algorithm, prove the runtime is $O(\log(n))$.

Submission

• Submit your solutions by the due date and time. For written problems, your work and answers as a PDF. For code, submit the source code. For tables and graphs, submit a PDF.