
Resources:	Segmentation	Faults
A	segmentation	fault	in	Unix-like	operating	systems	is	the	same	as	a	memory	access	error	in	Windows-like
operating	systems.	The	basic	idea	is	that	your	program	has	tried	to	read/write	data	from/to	a	part	of	the
computer’s	memory	that	the	program	has	not	been	granted	access	to.

Debugging	a	segmentation	fault	involves	identifying	the	statement(s)	of	the	program	which	has	this
behavior.	There	are	three	main	strategies	that	I	use	to	identify	the	bad	line.	I’m	listing	them	from	easier	to
do	and	least	powerful,	to	harder	to	do	and	most	powerful.

1-	“Print	debugging”.	Put	output	statements	in	your	code.	The	idea	is	to	get	an	output	statement	that	occurs
immediately	before	the	bad	line,	so	you	see	the	output	when	the	program	runs,	and	an	output	statement
write	after	the	bad	line,	so	you	don’t	see	it	when	the	program	runs,	because	the	segmentation	fault	stops
execution.	Putting	an	output	statement	between	every	pair	of	lines	in	the	program	is	not	desirable.
Especially	since	you	have	to	remove	them	(or	comment	them	out)	when	debugging	has	finished.

I	use	a	binary	search	strategy.	Put	an	output	statement	at	the	beginning	of	the	program,	one	at	the	end,	and
one	in	the	middle.	Build	and	run	the	program.	After	the	segmentation	fault	occurs,	observe	the	last
statement	in	the	output,	and	the	first	statement	that	isn’t	in	the	output.	Put	another	output	statement	half-
way	between	these	statements.	Repeat	until	only	one	line	can	be	blamed.	Now,	fix	that	line.	This	usually
involves	adding	some	more	information	to	the	debugging	output	statement,	such	as	the	.size()	of	a	vector,
the	value	of	the	index	being	used,	etc.,	to	understand	how	and	why	the	index	is	out	of	range.

You	may	not	have	access	to	the	 main() 	function	in	your	program	in	the	case	of	unit	tests,	and	some	other
situations.	In	this	case,	try	to	identify	the	most	likely	functions	or	methods	that	could	be	causing	the
segmentation	fault.	Put	a	single	output	statement	at	the	start	of	these	suspects,	so	you	can	see	when	the
functions	are	entered.	Also	put	one	right	before	the	return	for	these	functions.	Now	when	you	run	the
program.	The	likely	culprit	is	the	function	that	was	entered,	but	never	returned.	Continue	with	binary	search
for	the	line	in	question.

2-	“Memory	checker”.	Use	a	program	to	analyze	your	program	as	it	runs.	This	memory	checking	program	can
watch	for	questionable	and	invalid	memory	usage,	reporting	all	cases	through	its	output.	For	example,	I	use
the	 valgrind 	program.	You	use	this	by	running	valgrind	and	telling	it	to	run	your	program.	If	you’re	doing
unit	tests	from	CodeGrinder,	try	“make	valgrind”	instead	of	“make	test”.	This	will	run	the	unit	test	program,
using	valgrind,	and	report	valgrind’s	findings.	Start	with	the	first	reported	anomaly,	understand	it,	and	fix	it.
Then,	build	and	run	again.	Repeat	until	valgrind	doesn’t	report	any	anomalies.	As	with	print	debugging,	you
may	add	output	statements	immediately	before	the	line	that	is	producing	the	error	to	understand	the
relevant	data	values	to	fix	the	problem.

3-	“Debugger”.	Use	a	debugger	program	to	analyze	your	program	as	it	runs.	A	debugger	is	a	program	that
can	run	your	program	one	step	at	a	time,	or	more,	depending	on	your	ability	to	communicate	your	desires	to
the	debugger.	The	debugger	can	show	you	the	value	of	any	variable	as	you	go.	No	need	to	add	debugging
output	statements,	just	to	remove	them	later.	The	downside,	is	that	you	need	to	learn	how	to	use	the
debugger	correctly	to	get	the	information	and	behavior	you	need.	CS2810	students	often	use	the	debugger
for	their	assembly	programs.	It	would	be	a	waste	not	to	use	debugger	skills	on	your	C++	programs	too.

As	stated	earlier,	the	reason	for	a	segmentation	fault	is	invalid	memory	access	by	your	program.	Early	in
learning	C++,	the	most	common	way	to	do	this	is	by	using	invalid	indexes	into	a	vector,	string,	array,	or	any
other	sequential	data	type	with	integer	indexes.	The	desired	debugging	information	is	1)	the	actual	index
value	by	displaying	it	(don’t	trust	what	you	think	it	should	be,	actually	observe	it),	and	2)	the	actual	size	of
the	object	you	are	indexing	into	(again,	don’t	trust	what	you	think,	find	the	actual	value).

A	segmentation	fault	may	occur	when	calling	class	methods,	if	the	object	is	not	actually	a	valid	object.

Once	the	problem	is	identified,	it	may	be	that	code	has	to	change	in	a	different	part	of	the	program	to	make
the	data	structure	be	correctly	sized,	or	to	make	the	index	be	correctly	calculated.


