Examining Database Security Methods 

Strategies to Prevent Inference-Based Snooping in Database Tables

Bob Nielson
Dixie State College
St. George, UT
nielson@dixie.edu
David Green
Governors State University
University Park, IL
d-green@govst.edu
Abstract
One of the primary reasons for a database is to capture data for future statistical analysis. But savvy users can use this information to deduce the confidential information that is contained in a database. A real need exists to allow for general statistical analysis from a database while still preventing the disclosure of detailed confidential information. This paper discusses several methods that attempt to do just that including query restriction, data perturbation, output perturbation, conceptual, partitioning, and hybrid methods.
Keywords: database security, inference-based snooping, query restrictions, output perturbation, partitioning
The Problem of Database Security
Today’s businesses are relying more and more on their data that they have collected. Maintaining the security in those databases is a real challenge. For example, businesses want to be able to access summary information about the salary budget of a department. But they do not wish to disclose the specific salary of an individual. There are several methods that attempt to do this: query restriction, data perturbation, output perturbation, conceptual, partitioning, and hybrid methods.

Employees can just query the database to obtain their co-workers’ salary information. This information can be used to demand a higher wage. The payroll department needs access to this table to run and manage the company payroll. They do not, however, need to access this database to obtain their co-workers’ salary to demand a higher wage. Is there a method that exists to allow the access to the database to do the departments job yet stop access to find their co-workers’ salary information? The type of employee that has database access to do their job, yet tries to get information that they should not have is called a ‘snooper’. There is a real need to stop these snoopers to insure the confidentiality of the database.

A database table is said to be compromised if a snooper can infer data from that table. This does not mean that it has to be breeched to be compromised. If a method exists to infer the data then the table is compromised. It is then not a matter of how the table is to be compromised but a question of when.

The most common solution to the problem of inferring data is to ensure that all SELECTs return more than one record. A SELECT will return an error if one specific record is returned. For example asking the data base to return the current salary of employee # 555-55-5555 would return an error message. 

This is easily overcome by inferring data in the table. If the snooper knows that there are only 2 men in the payroll department and one of them is himself, then the snooper can query the database to return the average of all employees in the personnel department. Since the snooper knows his own salary, he can mathematically calculate the other employee’s salary. The average_salary=(unknown_salary+own_salary)/2. Or unknown_salary=average_salary*2-own_salary. This can be used to infer the whole table with little effort. It can be shown that an entire database can be inferred given only one record in the table. This paper will present strategies that address inference-based loopholes in database tables in an attempt to prevent snooping and improve database security.
Current Research into Database Security
Several methods to address the security problem have been proposed. These methods can be broken down into six methods. These methods include query restrictions, data perturbation, output perturbation, conceptual, partitioning, and hybrid.
Query Restriction Methods
One of the most common methods is to insure that all query results use several records in the database. As the number of records required computing the result is increased, so is the security of the database. So just how many required records should be used? If a table has L records and the query requires K records to produce an output, then even as K approaches L/2 it has been shown to be insecure. (Adam & Worthmann,1989) If R denotes the maximum overlapping pairs of queries, then the number of queries needed is 1+(K-1)/R. This is not much of a practical hindrance to this type of attack. Several users could team up and get around the query restrictions. Each snooper generates sets and subsets of the data and then later combines them. 

Another method is to answer only N queries per day on a table. This type of protection is subject to a timed attack over several days. It will slow down the attack, but it will not prevent the attack from happening.

A third method is to keep a log of all queries and answer only those that will not compromise the data. This method, however, is very CPU intensive and disk intensive. It slows down the query speeds significantly. If this method is implemented over a longer period of time, all queries will eventually be blocked because query done a week ago, combined with the current query, could result in a breech.

A fourth method is called cell suppression. In this method the basic idea is to suppress the cells that might cause the database to be compromised. If the salary of an employee is sensitive then do not allow query responses on that data. This method might ‘suppress’ the very information that a valid user may require.

Data Perturbation Methods
In the data perturbation methods the database is transformed into another database. The transformed data is then used for statistical analysis. This transformed table needs to be maintained by the system or the database manager.

In data perturbation methods, an error is introduced into the data. With larger datasets the data error approaches zero. In smaller datasets the error is larger. In order to introduce an error to the data a bias factor is introduced. This factor can skew the summary statistics of the data. Both the data error and the bias factor need to be reduced while at the same time they must secure the data.

In the first method, the data is exchanged with another set of data with the same probability distribution. In this method the data that is to be protected is replaced by randomly generated data with the same probability distribution. There are several problems that need to be addressed with this approach: 

1. The data swapping is computationally intensive and is only suited for static data. 

2. If the data is changed by adding or deleting a record, consideration needs to be made with its relation to the rest of the data. 

3. There needs to be a one to one relationship between the original data and the perturbed data. 

4. The precision of the resulting data may be unacceptable. 

5. The small query sizes of 1 to 2 records needs to be considered.

An alternative to this approach is proposed by Liew (1985). He proposes three steps:

1. Identify the underlying density function and estimate the parameters of that function. 

2. Generate a sample set of data with the same size using the underlying density function. 

3. Substitute the data with the generated data, using the same rank order. The largest value should be swapped with the largest data of the generated data. 

This method, however, introduces a bias that is not present in the original data and therefore is not suitable for detailed statistical analysis.

A third method is to introduce a random error E into the data. Two methods have been considered. First the data is replaced by the data + E. This method does not scale very well. An alternative is to replace the data with the data*E. This fixes the scaling problems but suffers from a bias error and is not accurate enough for detailed analysis.

A method proposed by Beck (1980) says that the error must be the same for every query of the same parameters. Otherwise the snooper could just repeat the query several times and compute the average. He proposes to use a hash of the query to adjust the error function. The effect of the error can be amplified or dampened using a constant multiplier. This can be used to tune the accuracy vs. the security of the data.

Tendick and Matloff (1984) suggest using a matricidal approach to this. They suggest creating matrices of the data and multiplying them by a key matrix of constants to further secure the data. The parameters of the constant matrix can be fine tuned to balance the accuracy and the security of the data.

Output Perturbation Methods
Output perturbation methods work not by modifying the actual data but by modifying the output of the queries. 

One of the output perturbation methods is called the random sample method. In this method the output is based on a random sample of the data, not the entire table. An entity in the table is included with a set probability. This probability can be variable or fixed. When the probability approaches 0 the query set size approaches 1. This approach can be compromised with enough queries. Also, this approach can produce results based on zero or one record (Denning, 1980).

Another method is the varying-output perturbation. In this method the output is varied by a variance of v. A snooper might have an accurate estimator of the target data if a large number of queries are allowed. In order to prevent this v is changed after a set number of queries are answered. This further secures the table (Beck, 1980)

Next are the rounding methods. In these methods the result is rounded with an accuracy of a. Systematic rounding, random rounding, and controlled rounding have all been investigated. Random rounding can produce the exact result with a small probability. It can also be compromised by averaging a large number of queries. Systematic rounding introduces a non-zero bias to the data. Generally rounding is not considered an effective security-control method (Adam & Worthmann, 1989).

Another method is to insert into the data a random set of records with the same statistics. This increases the size of the table thereby increasing the security of the table.

Conceptual Methods
In the conceptual approach a framework of data is described from creation to implementation. It is based on a collection of entities that have common attributes. There is no data manipulation language (such as relational algebra) allowed to merge or intersect the entities. The only data that the snooper has access to are the precompiled statistics of the common attributes.

The framework is described by the following rules:

1. Each subpopulation has a definition construct that contains allowed query types and histories of allowed queries.

2. A construct of user knowledge is maintained. The creation of the partitions in the table is based on what a user knows outside the framework of the data.

3. A constraint enforcer and checker are implemented to make sure that no data is compromised.

4. Before any modification to the rules is permitted a test set of data is constructed and tested.

5. A question and answering system is the only method by which the users may communicate to the DBMS (Ozasoyoglu, 1985).

This conceptual-model is an ambitious endeavor and has not been completely implemented yet. It is, however, a great tool in which to base further research.

Partitioning Methods
Partitioning is based on separating the entities in a database into mutually exclusive subsets. As long as the atomic population of each of the subsets is not one a high level of security exists. But if the snooper has knowledge of insert, update, and delete methods whole new arrays of attacks are opened up.

Large numbers of databases have been studied and it is been shown that partitions of size one is frequent. Sometimes it is difficult to achieve a correctly portioned database (Adam & Worthmann, 1989). 

In the partitioning method proposed by McLeish (1989) the system follows three basic rules for queries:

1. Queries will be allowed to return sum and count only if it is for the entire partitioned set.

2. Deletions and insertions can only occur in pairs. If single additions or deletions were allowed the snooper could obtain a sum and then delete one record, subtracting the two and thereby deducing the value.

3. If a record is deleted then it cannot be reinserted into the database.

Mcleish (1989) proves that, “A generalized dynamic statistical database remains secure for sum and count queries made before and after each update if and only if the global effective change is not equal to one.”

Hybrid Methods
In creating a security model for a database, the speed in which the data can be transformed and output is a major consideration. Some methods require an inordinate amount of time to complete. This is not acceptable by the users of the database. It has been shown that the data-perturbation methods take a significant amount of time to transform the data and there are still problems with inserting and deleting records. So they are only appropriate for static data tables. A whole new class of methods that can be done in memory called memory less inference controls emerges as a possibility worth investigating. But these controls are known to be insecure. The most common security control is data tracking. A log of all previous queries is maintained. Queries that can infer the protected data are blocked. This is known to be exponential in complexity; therefore it will take too long to complete. Maybe one could try a combination of several types of controls at the same time. Controls that are memory less can be combined (Hanson, 1995).

Some of these techniques are:

1. Maximum Order Control – This is based on the assumption that tables based on fewer attributes tend to release fewer sensitive statistics. By allowing statistical values to compute for only tables with a few attributes increases the security of the whole database.

2. Maximum Relative Table Size – This is based on the assumption that the larger the table the more secure it is. It has been shown that restricting the queries will be overly restrictive.

3. Partial Table Suppression – Partial table suppression selects a value of k for the expected density for a given partition within the table and does not release queries that fall below that level. K is assumed to have a value greater than 2.

4. Query Set Size Control – This seeks to limit the queries based on the relation between the query size and the table size. This control has very little value if used alone (Hanson, 1995).

Since these methods are computationally quick and easy to implement, combining all of these makes sense. First one would run the queries through the maximum order control. Second one would try the maximum relative table size control. If the query passes the first two one would try the query set size control. Finally one should try the partial table suppression control. If the query passes all for these controls then release the results of the query (Hanson, 1995).

The Impact of the current research
The methods described have been shown to increase the security of a database system. But none have been shown to insure the complete safety of a system. Different methods work best in different situations. None work best in all situations. 

There is a trade-off between the security of a database and the needs of the users of the database. Every query allowed is also one more security threat. Time needs to be spent balancing the needs of the users and the security needs of the company in any DBMS.

There is also a trade-off between response time of a query and the security needs of the company. Most security methods take time to execute, and therefore time also needs to be spent balancing these needs too.

Remaining Questions
Here are some questions that still remain:

1. Do security methods exist that will guarantee the security of a DBMS? 

2. What is the optimal balance between security and user needs?

3. What is the optimal balance between security and query response time?

Further Research
Here are some areas for further research:

1. Testing the security of different methods – A small database can be constructed with a small number of records. All the different methods could be implemented to see if the database could become compromised. If a small database can be compromised then a larger one can become compromised with a little more effort. 

2. Testing the encoding time of databases - A larger database can be constructed with millions of records. All the different methods could be tested to see how much time is required to encode the new database

3. Testing the response time of queries – Several databases could be constructed to measure the response time of sample queries. This could be compared to the response time of the same queries but in the ‘secure’ database.

4. Testing the accuracy of different methods – Some methods perturb the results. A test could be performed to test the accuracy of responses to the perturbed results.

5. Hybrid methods – Several methods could be combined to produce results. Query response times, encoding times, security scores, and accuracy of results need to be measured and compared.

6. Other methods – Other methods are on the horizon. These methods need to be described, documented, and tested. 

Conclusion
In summary, the following seven points proposed by Adam and Wortmann (1989) need to be considered before implementing any method for securing sensitive information in a database:

1. No single method exists that will work for all tables. There is a trade-off between high levels of security and a high richness of data analysis.

2. Most security methods treat the database as a file. Inter-relations between the elements of the database need to be considered.

3. For dynamic online databases, data perturbation methods tend to add a higher level of security. Careful consideration needs to be made concerning the addition and deletion of records.

4. For a static online database, data swapping seems promising although the bias errors need to be eliminated.

5. Cell suppression is commonly used for static offline databases but it suffers from security concerns. Random sample methods seem promising in these applications.

6. New types of attacks are being used every day. New defenses need to be researched to combat these threats.

7. Finally there is no single security control method that prevents both exact and partial disclosers.

The only truly secure database is one where no one can access it. This is impractical so a compromise needs to be reached.

References
Adam, Nabil R & Worthmann, John C (1989, December). Security-Control Methods for Statistical Databases: A Comparative Study. ACM Computing Surveys, Vol. 21, No. 4.

Beck, Leland L(1980 Sept.). A Security Mechanism for Statistical Databases. ACM Transactions of Database Systems, Vol. 5, No. 3, Sept. 1980, Pages 316-338.

Denning, D. E. (1980). Secure Statistical Databases with Random Sample Queries. ACM Transactions on Database Systems, Vol 5, No. 3, Pages 291-315.

Chin, Francis (1978, March). Security in Statistical Databases for Queries with Small Counts. ACM Transactions on Database Systems, Vol. 3, No. 1, Pages 92-104.

Hanson, Steven C (1995, June). Hybrid Inferential Security Methods for Statistical Databases. ACM SIGAPP Applied Computed Review, Vol. 3, Issue 1.

Liew, C.K., Choi, W.J., and Liew, C.J (1985). A data distortion by probability distribution. ACM Transactions on Database Systems, Vol. 10, No. 3, Page 395-411.

McLeish, Mary (1989, March). Further Results on the Security of Partitioned Dynamic Statistical Databases. ACM Transactions of Database Systems, Vol. 14, No. 1, Pages 98-113.

Ozsoyoglu, G., Su, T. A. (1985). Rounding and Inference Control in Conceptual Models for Statistical Databases. Proceedings of IEEE Symposium on Security and Privacy, Pages 160-173.

Tendick, Patrick & Matloff, Norman (1984, March). A Modify Random-Perturbation Method for Database Security. ACM Transactions on Database Systems, Vol. 19, No. 1, March 1984, Pages 47-63.

